Preview

Онкологическая колопроктология

Расширенный поиск

Роль стволовых клеток в канцерогенезе толстой кишки

https://doi.org/10.17650/2220-3478-2015-5-3-15-24

Полный текст:

Аннотация

Значительную роль в развитии и прогрессировании колоректального рака играют так называемые стволовые клетки опухоли (cancer stem cells, CSC), которые способны к самоподдержанию и мультипотентной дифференцировке. CSC могут образовываться из мутантных стволовых клеток или путем дедифференцировки эпителиальных клеток крипты. В последнее время большое внимание уделяется изучению роли CSC в раке толстой кишки, но крайне мало публикаций относительно их экспрессии в полипах толстой кишки. По классификации Всемирной организации здравоохранения (2010) в группу предопухолевых поражений толстой кишки помимо классических тубулярных, ворсинчатых и тубулоборсинчатых аденом отнесены так называемые зубчатые образования, включающие гиперпластический полип, зубчатую аденому на широком основании и традиционную зубчатую аденому. Большое количество публикаций посвящено вновь выделенным категориям CSC, но полного понимания процессов, вовлеченных в формирование полипов и их прогрессию в рак толстой кишки, до сих пор нет. Идентификация CSC в полипах толстой кишки позволит оценить их потенциал злокачественности, проводить адекватную терапию, определить объем операции и дальнейшую тактику лечения. Это в свою очередь будет способствовать раннему обнаружению и предотвращению рака. Выявление CSC, оценка их локализации и распределения в тубулярной аденоме, зубчатой аденоме на широком основании, традиционной зубчатой аденоме и гиперпластическом полипе позволяют оценить потенциал злокачественности и прогноз для каждого полипа. В связи с этим определение маркеров, характерных для CSC толстой кишки, представляется интересным не только с научной, но и с практической точки зрения.

Об авторах

Н. А. Нефёдова
ФГБОУ ВО «Московский государственный университет им. М. В. Ломоносова»; Россия, 119192, Москва, Ломоносовский просп., 31, корп. 5
Россия


П. Г. Мальков
ФГБОУ ВО «Московский государственный университет им. М. В. Ломоносова»; Россия, 119192, Москва, Ломоносовский просп., 31, корп. 5
Россия


Список литературы

1. Fanali C., Lucchetti D., Farina M. et al. Cancer stem cells in colorectal cancer from pathogenesis to therapy: controversies and perspectives. World J Gastroenterol 2014;20(4):923–42.

2. Vogelstein B., Fearon E. R., Hamilton S. R. et al. Genetic alterations during olorectaltumor development. N Engl J Med 1988;319(9):525–32.

3. Wong N. A., Pignatelli M. Beta-catenin – a linchpin in colorectal carcinogenesis? Am J Pathol 2002;160(2):389–401.

4. Fang X., Yu W., Li L. et al. ChIP-seq and functional analysis of the SOX2 gene in colorectal cancers. OMICS 2010;14(4):369–84.

5. Arends M. J. Pathways of colorectal carcinogenesis. Appl Immunohistochem Mol Morphol 2013;21(2):97–102.

6. Snover D. C., Ahnen D. J., Burt R. W., Odze R. D. Serrated polyps of the colon and rectum and serrated polyposis. In book: WHO classification of tumours of the digestive system. Bosman F. T., Carneiro F., Hruban R. H. et al. (eds.). Lyon, France: IARC, 2010. Pp. 160–5.

7. Caruso M., Fung K. Y., Moore J. et al. Claudin-1 Expression Is Elevated in Colorectal Cancer Precursor Lesions Harboring the BRAF V600E Mutation. Transl Oncol 2014;7(4):456–63.

8. Jiao Y. F., Nakamura S., Sugai T. et al. Serrated adenoma of the colorectum undergoes a proliferation versus differentiation process: new conceptual interpretation of morphogenesis. Oncology 2008;74 (3–4):127–34.

9. Bettington M., Walker N., Clouston A. et al. The serrated pathway to colorectal arcinoma: current concepts and challenges. Histopathology 2013;62(3):367–86.

10. Харлова О. А., Данилова Н. В.,Мальков П. Г. и др. Зубчатые образования (serrated lesions) толстой кишки. Архив патологии 2015;1:60–8. [Kharlova O. A., Danilova N. V., Malkov P. G. et al. Serrated lesions of the colon. Arkhiv patologii = Pathology Archive 2015;1:60–8. (In Russ.)].

11. Bettington M. L., Walker N. I., Rosty C. et al. A clinicopathological and molecular analysis of 200 traditional serrated adenomas. Mod Pathol 2015;28(3):414–27.

12. Conesa-Zamora P., Garcia-Solano J., Garcia-Garcia F. et al. Expression profiling shows differential molecular pathways and provides potential new diagnostic biomarkers for colorectal serrated adenocarcinoma. Int J Cancer 2013;132(2):297–307.

13. Safaee Ardekani G., Jafarnejad S. M., Tan L. et al. The prognostic value of BRAF mutation in colorectal cancer and melanoma: systematic review and meta-analysis. PLoS One 2012;7(10):e47054.

14. 13. Vermeulen L., Todaro M., de Sousa Mello F. et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA 2008;105(36):13427–32.

15. Antoniou A., Hebrant A., Dom G. et al. Cancer stem cells, a fuzzy evolving concept: a cell population or a cell property? Cell Cycle 2013;12(24):3743–8.

16. Gangemi R., Paleari L., Orengo A. M. et al. Cancer stem cells: a new paradigm for nderstanding tumor growth and progression and drug resistance. Curr Med Chem 2009;16(14):1688–703.

17. Puglisi M. A., Tesori V., Lattanzi W. et al. Colon cancer stem cells: controversies and perspectives. World J Gastroenterol 2013;19(20):2997–3006.

18. Cicalese A., Bonizzi G., Pasi C. E. et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 2009;138(6):1083–95.

19. Botchkina G. Colon cancer stem cellsfrom basic to clinical application. Cancer Lett 2013;338(1):127–40.

20. Blanpain C., Horsley V., Fuchs E. Epithelial stem cells: turning over new leaves. Cell 2007;128(3):445–58.

21. Vries R. G., Huch M., Clevers H. Stem cells and cancer of the stomach and intestine. Mol Oncol 2010;4(5):373–84.

22. Dexter D. L., Spremulli E. N., Fligiel Z. et al. Heterogeneity of cancer cells from a single human colon carcinoma. Am J Med 1981;71(6):949–56.

23. Barker N., Ridgway R. A., van Es J. H. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 2009;457(7229):608–11.

24. Shih I. M., Wang T. L., Traverso G. et al. Top-down morphogenesis of colorectal tumors. Proc Natl Acad Sci USA 2001;98(5):2640–5.

25. Mohammadi M., Bzorek M., Bonde J. H. et al. The stem cell marker CD133 is highly expressed in sessile serrated adenoma and its borderline variant compared with hyperplastic polyp. J Clin Pathol 2013;66(5):403–8.

26. Potten C. S., Booth C., Tudor G. L. et al. Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation 2003;71(1):28–41.

27. Todaro M., Francipane M. G., Medema J. P., Stassi G. Colon cancer stem cells: promise of targeted therapy. Gastroenterology 2010;138(6):2151–62.

28. Nishimura S., Wakabayashi N., Toyoda K. et al. Expression of Musashi-1 in human normal colon crypt cells: a possible stem cell marker of human colon epithelium. Dig Dis Sci 2003;48(8):1523–9.

29. Femia A. P., Dolara P., Salvadori M. et al. Expression of LGR-5, MSI-1 and DCAMKL-1, putative stem cell markers, in the early phases of 1,2-dimethylhydrazineinduced rat colon carcinogenesis: correlation with nuclear beta-catenin. BMC Cancer 2013;13:48.

30. Femia A. P., Luceri C., Toti S. et al. Gene expression profile and genomic alterations in colonic tumours induced by 1,2-dimethylhydrazine (DMH) in rats. BMC Cancer 2010;10:194.

31. Murayama M., Okamoto R., Tsuchiya K. et al. Musashi-1 suppresses expression of Paneth cell-specific genes in human intestinal epithelial cells. J Gastroenterol 2009;44(3):173–82.

32. Weina K., Utikal J. SOX2 and cancer: current research and its implications in the clinic. Clin Transl Med 2014;3:19.

33. Sarkar A., Hochedlinger K. The SOX family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 2013;12(1):15–30.

34. Toschi L., Finocchiaro G., Nguyen T. T. et al. Increased SOX2 gene copy number is associated with FGFR1 and PIK3CA gene gain in non-small cell lung cancer and predicts improved survival in early stage disease. PLoS One 2014;9(4):e95303.

35. Neumann J., Bahr F., Horst D. et al. SOX2 expression correlates with lymph-node metastases and distant spread in right-sided colon cancer. BMC Cancer 2011;11:518.

36. Park E. T., Gum J. R., Kakar S. et al. Aberrant expression of SOX2 upregulates MUC5AC gastric foveolar mucin in mucinous cancers of the colorectum and related lesions. Int J Cancer 2008;122(6):1253–60.

37. Saigusa S., Tanaka K., Toiyama Y. et al. Correlation of CD133, OCT4, and SOX2 in rectal cancer and their association with distant recurrence after chemoradiotherapy. Ann Surg Oncol 2009;16(12):3488–98.

38. Han X., Fang X., Lou X. et al. Silencing SOX2 induced mesenchymal-epithelial transition and its expression predicts liver and lymph node metastasis of CRC patients. PLoSOne 2012;7(8):e41335.

39. Avilion A. A., Nicolis S. K., Pevny L. H. et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 2003;17(1):126–40.

40. Liu H., Du L., Wen Z. et al. Sex determining region Y-box 2 inhibits the proliferation of colorectal adenocarcinoma cells through the mTOR signaling pathway. Int J Mol Med 2013;32(1):59–66.

41. Huang E. H., Hynes M. J., Zhang T. et al. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 2009;69(8):3382–9.

42. Kozovska Z., Gabrisova V., Kucerova L. Colon cancer: cancer stem cells markers, drug resistance and treatment. Biomed Pharmacother 2014;68(8):911–6.

43. Kang E. J., Jung H., Woo O. H. et al. Association of aldehyde dehydrogenase 1 expression and biologically aggressive features in breast cancer. Neoplasma 2014; 61(3):352–62.

44. Goossens-Beumer I. J., Zeestraten E. C., Benard A. et al. Clinical prognostic value of combined analysis of Aldh1, Survivin, and EpCAM expression in colorectal cancer. Br J Cancer 2014;110(12):2935–44.

45. Fitzgerald T. L., Rangan S., Dobbs L. et al. The impact of Aldehyde dehydrogenase 1 expression on prognosis for metastatic colon cancer. J Surg Res 2014;192(1):82–9.

46. Nestl A., Von Stein O. D., Zatloukal K. et al. Gene expression patterns associated with the metastatic phenotype in rodent and human tumors. Cancer Res 2001;61(4):1569–77.

47. Lim S. C., Oh S. H. The role of CD24 in various human epithelial neoplasias. Pathol Res Pract 2005;201(7):479–86.

48. Weichert W., Denkert C., Burkhardt M. et al. Cytoplasmic CD24 expression in colorectal cancer independently correlates with shortened patient survival. Clin Cancer Res 2005;11(18):6574–81.

49. Sagiv E., Starr A., Rozovski U. et al. Targeting CD24 for treatment of colorectal and pancreatic cancer by monoclonal antibodies or small interfering RNA. Cancer Res 2008;68(8):2803–12.

50. Yeung T. M., Gandhi S. C., Wilding J. L. et al. Cancer stem cells from colorectal ancerderived cell lines. Proc Natl Acad Sci USA 2010;107(8):3722–7.

51. Sneath R. J., Mangham D. C. The normal structure and function of CD44 and its role in neoplasia. Mol Pathol 1998;51(4):191–200.

52. Du L., Wang H., He L. et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 2008;14(21):6751–60.

53. Zeilstra J., Joosten S. P., Dokter M. et al. Deletion of the WNT target and cancer stem cell marker CD44 in Apc (Min/+) mice attenuates intestinal tumorigenesis. Cancer Res 2008;68(10):3655–61.

54. Wang J. Y., Chang C. C., Chiang C. C. et al. Silibinin suppresses the maintenance of colorectal cancer stem-like cells by inhibiting PP2A/AKT/mTOR pathways. J Cell Biochem 2012;113(5):1733–43.

55. Baker A. M., Graham T. A., Elia G. et al. Characterization of LGR5 stem cells in colorectal adenomas and carcinomas. Sci Rep 2015;5:8654.

56. Nagano O., Saya H. Mechanism and biological significance of CD44 cleavage. Cancer Sci 2004;95(12):930–5.

57. Harada N., Mizoi T., Kinouchi M. et al. Introduction of antisense CD44S CDNA down-regulates expression of overall CD44 isoforms and inhibits tumor growth and metastasis in highly metastatic colon carcinoma cells. Int J Cancer 2001; 91(1):67–75.

58. Dallas M. R., Liu G., Chen W. C. et al. Divergent roles of CD44 and carcinoembryonic antigen in colon cancer metastasis. FASEB J 2012;26(6):2648–56.

59. Ropponen K. M., Eskelinen M. J., Lipponen P. K. et al. Expression of CD44 and variant proteins in human colorectal cancer and its relevance for prognosis. Scand J Gastroenterol 1998;33(3):301–9.

60. Huh J. W., Kim H. R., Kim Y. J. et al. Expression of standard CD44 in human colorectal carcinoma: association with prognosis. Pathol Int 2009;59(4):241–6.


Для цитирования:


Нефёдова Н.А., Мальков П.Г. Роль стволовых клеток в канцерогенезе толстой кишки. Онкологическая колопроктология. 2015;5(3):15-24. https://doi.org/10.17650/2220-3478-2015-5-3-15-24

For citation:


Nefedova N.A., Mal,kov P.G. Role of stem cells in large bowel carcinogenesis. Colorectal Oncology. 2015;5(3):15-24. (In Russ.) https://doi.org/10.17650/2220-3478-2015-5-3-15-24

Просмотров: 427


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-3478 (Print)
ISSN 2413-0583 (Online)