Preview

Онкологическая колопроктология

Расширенный поиск

Роль циркулирующей в крови опухолевой ДНК при раке толстой кишки

https://doi.org/10.17650/2220-3478-2016-6-3-43-52

Полный текст:

Аннотация

Под термином «жидкостная биопсия» (“liquid biopsy”) понимают изучение различных дериватов опухоли (циркулирующая опухолевая ДНК, циркулирующие опухолевые клетки, опухолевая РНК, белки опухоли) в плазме крови. Данные жидкостной биопсии
дают информацию о молекулярных нарушениях и морфологии в реальном времени по всей опухолевой массе и позволяют оценить в динамике эволюционные изменения образования, гетерогенность заболевания и эффективность терапии. Несмотря на впечатляющую перспективу применения данного метода в диагностике и мониторинге заболевания, тем не менее существует ряд проблем по внедрению жидкостной биопсии при различных онкопатологиях. В данном обзоре литературы мы сконцентрируемся
на роли циркулирующей ДНК как источнике информации об опухоли у больных раком толстой кишки.

Об авторах

М. Ю. Федянин
ФГБУ «РОНЦ им. Н. Н. Блохина» Минздрава России
Россия


Е. М. Полянская
ФГБУ «РОНЦ им. Н. Н. Блохина» Минздрава России
Россия


С. А. Тюляндин
ФГБУ «РОНЦ им. Н. Н. Блохина» Минздрава России
Россия


Список литературы

1. Leon S. A., Shapiro B., Sklaroff D. M., Yaros M. J. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 1977;37(3):646–50.

2. Mandel P. M., Mйtais P. Les acides nucleiques du plasma sanguine chez l’homme. CR Acad Sci Paris 1948;142:241–3.

3. Crowley E., Di Nicolantonio F., Loupakis F., Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol 2013;10(8):472–84.

4. Hibi K., Robinson C. R., Booker S. et al. Molecular detection of genetic alterations in the serum of colorectal cancer patients. Cancer Res 1998;58(7):1405–7.

5. Schwarzenbach H., Hoon D. S., Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011;11(6):426–37.

6. Atamaniuk J., Vidotto C., Tschan H. et al. Increased concentrations of cell-free plasma DNA after exhaustive exercise. Clin Chem 2004;50(9):1668–70.

7. Heitzer E., Ulz P., Geigl J. B. Circulating Tumor DNA as a Liquid Biopsy for Cancer. Clin Chem 2015;61(1):112–23.

8. Ignatiadis M., Dawson S. J. Circulating tumor cells and circulating tumor DNA for precision medicine: dream or reality? Ann Oncol 2014;25(12):2304–13.

9. Lecomte T., Ceze N., Dorval E., Laurent-Puig P. Circulating free tumor DNA and colorectal cancer. Gastroenterol Clin Biol 2010;34(12):662–81.

10. Xie F., Yan X., Madan A. et al. Examination of circulating DNA by using next generation sequence technology in colorectal cancer. J Clin Oncol 2015;33(suppl):abstr e14507.

11. Jahr S., Hentze H., Englisch S. et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 2001;61:1659–65.

12. Mouliere F., Robert B., Arnau P. E. et al. High fragmentation characterizes tumour derived circulating DNA. PLoS One 2011;6(9):e23418.

13. Sikora A., Zimmermann B. G., Rusterholz C. et al. Detection of increased amounts of cell-free fetal DNA with short PCR amplicons. Clin Chem 2010;56(1):136–8. 14. Diehl F., Li M., Dressman D. et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA 2005;102(45):16368–73.

14. Andersen R. F., Spindler K. L., Brandslund I. et al. Improved sensitivity of circulating tumor DNA measurement using short PCR amplicons. Clin Chim Acta 2015;439:97–101.

15. Thierry A. R., Mouliere F., El Messaoudi S. et al. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med 2014;20(4):430–5.

16. Jung K., Fleischhacker M., Rabien A. Cell-free DNA in the blood as a solid tumor biomarker – a critical appraisal of the literature. Clin Chim Acta 2010;411(21–22):1611–24.

17. Wasserkort R., Kalmar A., Valcz G. et al. Aberrant septin 9 DNA methylation in colorectal cancer is restricted to a single CpG island. BMC Cancer 2013;13:398.

18. Danese E., Minicozzi A. M., Benati M. et al. Comparison of genetic and epigenetic alterations of primary tumors and matched plasma samples in patients with colorectal cancer. PLoS One 2015;10(5):e0126417

19. Di Fiore F., Charbonnier F., Lefebure B. et al. Clinical interest of KRAS mutation detection in blood for anti-EGFR therapies in metastatic colorectal cancer. Br J Cancer 2008;99(3):551–2.

20. Kuo Y. B., Chen J. S., Li Y. S. et al. Comparison of KRAS mutation analysis of primary tumors and matched 2 circulating cell-free DNA in plasmas of patients with colorectal cancer. Clin Chim Acta 2014;433:284–9.

21. Bettegowda C., Sausen M., Leary R. J. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014;6(224):224ra24.

22. Garcнa J. L., Matos I., Mejorada R. L. et al. Mutational analysis of circulating DNA and cells in patients with metastatic colorectal cancer. Ann Oncol 2014;25(suppl 4):iv546–63.

23. Takahashi G., Yamada T., Kan H. et al. Self-expandable colonic stent increases plasma level of circulating cell free DNA significantly in patients with obstructive colorectal cancer. ECCO 2015;abstr 2028.

24. Iwai T., Yamada T., Kan H. et al. Follow-up after resection of metastatic liver tumor from colorectal cancer using circulating cell-free DNA. ECCO 2015;abstr 434.

25. Reinert T., Schшler L. V., Thomsen R. et al. Analysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgery. Gut 2016;65(4):625–34.

26. Hayashi N., Egami H., Kai M. et al. No-touch isolation technique reduces intraoperative shedding of tumor cells into the portal vein during resection of colorectal cancer. Surgery 1999;125(4):369–74.

27. Spindler K. L. G., Appelt A. L., Pallisgaard N. et al. Cell-free DNA levels in colorectal cancer patients treated with irinotecan, healthy controls, and non-cancer patients with comorbidity. J Clin Oncol 2014;32(5s):abstr 3559.

28. Pucciarelli S., Enzo M., Agostini M. et al. Cell-free circulating DNA as a promising marker of colorectal cancer detection and progression. J Clin Oncol 2009;27(15s):abstr 11059.

29. Danese E., Montagnana M., Minicozzi A. M. et al. Real-time polymerase chain reaction quantification of free DNA in serum of patients with polyps and colorectal cancers. Clin Chem Lab Med 2010;48(11):1665–8.

30. Frattini M., Gallino G., Signoroni S. et al. Quantitative and qualitative characterization of plasma DNA identifies primary and recurrent colorectal cancer. Cancer Lett 2008;263(2):170–81.

31. Kopreski M. S., Benko F. A., Borys D. J. et al. Somatic mutation screening: identification of individuals harboring K-ras mutations with the use of plasma DNA. J Natl Cancer Inst 2000;92(11):918–23.

32. Tie J., Kinde I., Wang Y. et al. Circulating tumor DNA (ctDNA) as a marker of recurrence risk in stage II colon cancer (CC). J Clin Oncol 2014;32(5s): abstr 11015.

33. Tie J., Wang Y., Kinde I. et al. Circulating tumor DNA (ctDNA) in nonmetastatic colorectal cancer (CRC): Potential role as a screening tool. J Clin Oncol 2015;33(s3):abstr 518.

34. Messaoudi S. E., Mouliere F., Mollevi C. et al. Circulating DNA as a strong multimarker prognostic tool in metastatic colorectal cancer patients. J Clin Oncol 2014;32(5s):abstr 3604.

35. Liu F., Li C., Zhao J. et al. Detection of KRAS mutations in plasma from patients with metastatic colorectal cancer by the nextgeneration sequencing. ECOO 2015;abstr 2185.

36. Sefrioui D., Vasseur N., Sesboьй R. et al. Plasma cell-free DNA and fraction of circulating KRAS mutations as prognostic in patients with metastatic colorectal cancer. J Clin Oncol 2014;32(3s):abstr 490.

37. Sefrioui D., Vasseur C., Sesbouй R. et al. Clinical interest of digital PCR for routine detection of circulating DNA in metastatic colorectal cancer. Ann Oncol 2014; 25(suppl 4):iv546–63.

38. Marziali A., Vysotskaia V., Wiggin M. et al. Circulating tumor DNA as a highly specific diagnostic marker for colorectal cancer. J Clin Oncol 2014;32(suppl):abstr e22126.

39. Scott R., Dooley S., Lewis W. et al. Concordance of RAS mutation status in CRC patients by comparison of results from circulating tumour DNA and tissue-based testing. Ann Oncol 2015;26(suppl 4):1–100.

40. Jones F., Edelstein D., Wichner K. et al. Concordance of RAS mutation status in metastatic CRC patients by comparison of results from circulating tumor DNA and tissue-based RAS testing. ECOO 2015;abstr 2012.

41. Yamada T., Kan H., Matsumoto S. et al. Liquid biopsy detection of KRAS and BRAF mutations may be useful as a prognostic or predictive marker. Ann Oncol 2014; 25(suppl 4):iv58–84.

42. Poole J. C., Vibat C. R. T., Benesova L. et al. Highly sensitive quantitative detection of circulating tumor DNA in urine and plasma from advanced colorectal cancer patients in aid of early diagnosis of clinically relevant KRAS mutations. J Clin Oncol 2015; 33(suppl 3):abstr 654.

43. Janku F., Vibat C. R. T., Falchook G. S. et al. Low frequency KRAS G12/13 mutations in urine cell-free (cf) DNA from patients with BRAF V600E-mutant advanced cancers. J Clin Oncol 2015;33(suppl 3):abstr 11048.

44. Morelli M. P., Overman M. J., Sanchez E. V. et al. Frequency of concurrent gene mutations and copy number alterations in circulating cell-free DNA (cfDNA) from refractory metastatic CRC patients. J Clin Oncol 2014;32(5s):abstr 11117.

45. Tabernero J., Lenz H. J., Siena S. et al. Analysis of circulating DNA and protein biomarkers to predict the clinical activity of regorafenib and assess prognosis in patients with metastatic colorectal cancer: a retrospective, exploratory analysis of the CORRECT trial. Lancet Oncol 2015;16(8):937–48.

46. Wong A. L., Lim J. S., Sinha A. et al. Tumour pharmacodynamics and circulating cell free DNA in patients with refractory colorectal carcinoma treated with regorafenib. J Transl Med 2015;13:57.

47. Teufel M., Kalmus J., Rutstein M. et al. Analysis of biomarkers in circulating tumor DNA from the phase 3 CONCUR study of regorafenib in Asian patients with metastatic colorectal cancer (mCRC): Correlation with clinical outcome. ECOO 2015;abstr 2013.

48. Trevisiol C., Di Fabio F., Nascimbeni R. et al. Prognostic value of circulating KRAS2 gene mutations in colorectal cancer with distant metastases. Int J Biol Markers 2005;21(4):223–8.

49. Ryan B. M., Lefort F., McManus R. et al. A prospective study of circulating mutant KRAS2 in the serum of patients with colorectal neoplasia: strong prognostic indicator in postoperative follow up. Gut 2003;52(1):101–8.

50. Lecomte T., Berger A., Zinzindohoue F. et al. Detection of freecirculating tumor-associated DNA in plasma of colorectal cancer patients and its association with prognosis. Int J Cancer 2002;100(5):542–8.

51. Mora J., Urgell E., Farre A. et al. Agreement be-519 tween K-ras sequence variations detected in plasma and tissue DNA in pancreatic and colorectal cancer. Clin Chem 2006;52(7):1448–9.

52. de Kok J. B., van Solinge W. W., Ruers T. J. et al. Detection of tumour DNA in serum of colorectal cancer patients. Scand J Clin Lab Invest 1997;57(7):601–4.

53. Kopreski M. S., Benko F. A., Borys D. J. et al. Somatic mutation screening: identification of individuals harboring K-ras mutations with the use of plasma DNA. J Natl Cancer Inst 2000;92(11):918–23.

54. Minarikova P., Benesova L., Belsanova B. et al. Evaluation of circulating-tumor DNA (ctDNA) as a source material for molecular phenotyping of colorectal tumors. J Clin Oncol 2015;33(suppl 3):abstr 642.

55. Morris V. K., Morelli M. P., Janku F. et al. Clinical utility of a circulating cell-free DNA assay for clinical trial enrollment in refractory metastatic colorectal cancer patients. J Clin Oncol 2015;33(suppl 3):abstr 3601.

56. Nowell PC. The clonal evolution of tumor cell populations. Science 1976;194(4260):23–8.

57. Gerlinger M., Rowan A. J., Horswell S. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012;366(10):883–92.

58. Kreso A., O’Brien C. A., van Galen P. et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 2013;339(6119):543–8.

59. Brannon A., Vakiani E., Sylvester B. E. et al. Comparative sequencing analysis reveals high genomic concordance between matched primary and metastatic colorectal cancer lesions. Genome Biol 2014;15(8):454.

60. Donna M. A., Graham M., Mahadeo A. et al. Analysis of clonal evolution in colorectal cancer. J Clin Oncol 2014;32(5s).

61. Xie T., Cho Y. B., Wang K. et al. Patterns of somatic alterations between matched primary and metastatic colorectal tumors characterized by whole-genome sequencing. Genomics 2014;104(4):234–41.

62. Lee S. Y., Haq F., Kim D. et al. Comparative genomic analysis of primary and synchronous metastatic colorectal cancers. PLoS One 2014;9(3):e90459.

63. Sottoriva A., Kang H., Ma Z. et al. A Big Bang model of human colorectal tumor growth. Nat Genet 2015;47(3):209–16.

64. Diaz L. A. Jr, Williams R. T., Wu J. et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 2012;486(7404):537–40.

65. Mohan S., Heitzer E., Ulz P. et al. Changes in colorectal carcinoma genomes under anti-EGFR therapy identified by whole-genome plasma DNA sequencing. PLoS Genet 2014;10(3):e1004271.

66. Misale S., Yaeger R., Hobor S. et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 2012;486(7404):532–6.

67. Valtorta E., Misale S., Sartore-Bianchi A. et al. KRAS gene amplification in colorectal cancer and impact on response to EGFR- targeted therapy. Int J Cancer 2013;133(5):1259–65.

68. Bardelli A., Corso S., Bertotti A. et al. Amplification of the MET receptor drives resistance to antiEGFR therapies in colorectal cancer. Cancer Discov 2013;3(6):658–73.

69. Kopetz S., Overman M. J., Chen K. et al. Mutation and copy number discordance in primary versus metastatic colorectal cancer (mCRC). J Clin Oncol 2014;32(5s): abstr 3509.

70. Graham D. M., Arseneault M.,Sukhai M. A. et al. Analysis of clonal evolution in colorectal cancer. J Clin Oncol 2014;32(5s): abstr 3510.

71. Diehl F., Schmidt K., Choti M. A. et al. Circulating mutant DNA to assess tumor dynamics. Nat Med 2008;14(9):985–90.

72. Leary R. J., Kinde I., Diehl F. et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med 2010;2(20):20ra14.

73. Holdhoff M., Schmidt K., Donehower R., Diaz L. A. Jr. Analysis of circulating tumor DNA to confirm somatic KRAS mutations. J Natl Cancer Inst 2009;101(18):1284–5.

74. Mouliere F., Thierry A. R. The importance of examining the proportion of circulating DNA originating from tumor, microenvironment and normal cells in colorectal cancer patients. Expert Opin Biol Ther 2012;12(Suppl 1): S209–15.

75. Lee J., Mortimer S., Mei G. et al. Ultra-high-quality sequencing assay for comprehensive genetic panel analysis of tumorderived circulating cell-free DNA in colorectal cancer patients. J Clin Oncol 2014; 32 (suppl 3):abstr 504.

76. Spindler K. L., Pallisgaard N., Vogelius I., Jakobsen A. Quantitative cell free DNA, KRAS, and BRAF mutations in plasma from patients with metastatic colorectal cancer during treatment with cetuximab and irinotecan. Clin Cancer Res 2012;18(4);1177–85.

77. Teufel M., Kalmus J., Rutstein M. et al. Analysis of biomarkers in circulating tumor DNA from the phase 3 CONCUR study of regorafenib in Asian patients with metastatic colorectal cancer (mCRC): Correlation with clinical outcome. ECOO 2015;abstr 2013.

78. Pallisgaard N., Spindler K. G., Vogelius I. S. et al. Cell-free DNA, KRAS, and BRAF mutations in plasma from patients with metastatic colorectal cancer treated with third-line cetuximab and irinotecan. J Clin Oncol 2011;29(suppl):abstr 3599.

79. Spindler K. G., Pallisgaard N., Skovgaard K. et al. Circulating free DNA and plasma KRAS mutations in metastatic colorectal cancer patients treated with bi-weekly cetuximab and irinotecan. Ann Oncol 2014;25(suppl 4):iv58–84.

80. Mende M., Thiede C., Schuster C. et al. Detection of tumor progression via cell-free DNA (cfDNA) in patients with colorectal cancer. J Clin Oncol 2015;33(suppl 3):abstr 598.

81. Takayama Y., Suzuki K., Daito T. et al. Emergence of KRAS mutation in detection of circulating tumor DNA during treatments for metastatic gastrointestinal cancer patients. J Clin Oncol 2015;33(suppl 3):abstr 11026.

82. Lindforss U., Zetterquist H., Papadogiannakis N., Olivecrona H. Persistence of K-ras mutations in plasma after colorectal tumor resection. Anticancer Res 2005;25(1B):657–61.

83. Siravegna G., Mussolin B., Buscarino M. et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med 2015;21(7):827.

84. Hobor S., Van Emburgh B. O., Crowley E. et al. TGF-α and amphiregulin paracrine network promotes resistance to EGFR blockade in colorectal cancer cells. Clin Cancer Res 2014;20(24):6429–38.

85. Hindson B. J., Ness K. D. Masquelier D. A. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 2011;83(22):8604–10.


Для цитирования:


Федянин М.Ю., Полянская Е.М., Тюляндин С.А. Роль циркулирующей в крови опухолевой ДНК при раке толстой кишки. Онкологическая колопроктология. 2016;6(3):43-52. https://doi.org/10.17650/2220-3478-2016-6-3-43-52

For citation:


Fedyanin M.Y., Polyanskaya E.M., Tjulyandin S.A. The role of circulating tumor DNA in patients with colon cancer. Colorectal Oncology. 2016;6(3):43-52. (In Russ.) https://doi.org/10.17650/2220-3478-2016-6-3-43-52

Просмотров: 234


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-3478 (Print)
ISSN 2413-0583 (Online)