Preview

Тазовая хирургия и онкология

Расширенный поиск

Метаанализ исследований, посвященных изучению конкордантности мутационного статуса генов между первичной опухолью и метастазами рака толстой кишки

https://doi.org/10.17650/2220-3478-2017-7-1-27-41

Полный текст:

Аннотация

Введение. В последние годы появился ряд исследований, демонстрирующих высокую гетерогенность опухолей, в том числе и рака толстой кишки.

Цель исследования – проведение метаанализа работ, посвященных изучению данного вопроса при раке толстой кишки.

Материалы и методы. Выполнен поиск статей в базе данных PubMed, а также тезисов, представленных на конференциях ASCO и ESMO, опубликованных до августа 2016 г. Основными критериями включения результатов исследования стали: сравнение мутационного статуса генов KRAS, NRAS, BRAF, PIK3CA в первичной опухоли и метастазах с числом больных, доступных для анализа, 10 и более. Метаанализ проводился с использованием программы Review Manager (RevMan), version 5.3.

Результаты. Статистически значимо выявляются случаи расхождения мутационного статуса генов KRAS (5 %; отношение рисков 0,95; 95 % доверительный интервал 0,92–0,98; р = 0,003), PIK3CA (7 %; отношение рисков 0,93; 95 % доверительный интервал 0,86–0,99; р = 0,04), но не BRAF и NRAS, между первичной опухолью и метастазами. Не отмечено существенных систематических ошибок, связанных с публикациями. Дискордантность по мутации в гене KRAS была значимо выше при сравнении первичной опухоли и метастазов в лимфатические узлы и составила 13,2 % (р = 0,036).

Выводы. Доказана возможность дискордантности мутационного статуса гена KRAS между первичной опухолью и метастазами. Учитывая небольшой процент случаев расхождения, необходимо выделить группу пациентов с высоким риском дискордантности, которым необходимо повторно определять мутационный статус генов в метастазах.

Об авторах

М. Ю. Федянин
ФГБУ «Российский онкологический научный центр им. Н. Н. Блохина» Минздрава России
Россия
Россия, 115478 Москва, Каширское шоссе, 23


А. А. Трякин
ФГБУ «Российский онкологический научный центр им. Н. Н. Блохина» Минздрава России
Россия
Россия, 115478 Москва, Каширское шоссе, 23


И. А. Покатаев
ФГБУ «Российский онкологический научный центр им. Н. Н. Блохина» Минздрава России
Россия
Россия, 115478 Москва, Каширское шоссе, 23


С. А. Тюляндин
ФГБУ «Российский онкологический научный центр им. Н. Н. Блохина» Минздрава России
Россия
Россия, 115478 Москва, Каширское шоссе, 23


Список литературы

1. Al-Mulla F., Keith W. N., Pickford I. R. et al. Comparative genomic hybridization analysis of primary colorectal carcinomas and their synchronous metastases. Genes Chromosomes Cancer 1999;24(4):306–14.

2. Paredes-Zaglul A., Kang J. J., Essig Y. P. et al. Analysis of colorectal cancer by comparative genomic hybridization: evidence for induction of the metastatic phenotype by loss of tumor suppressor genes. Clin Cancer Res 1998;4(4):879–86.

3. Korn W. M., Yasutake T., Kuo W. L. et al. Chromosome arm 20q gains and other genomic alterations in colorectal cancer metastatic to liver, as analyzed by comparative genomic hybridization and fluorescence in situ hybridization. Genes Chromosomes Cancer 1999;25(2):82–90.

4. Blaker H., Graf M., Rieker R. J. et al. Comparison of losses of heterozygosity and replication errors in primary colorectal carcinomas and corresponding liver metastases. J Pathol 1999;188(3):258–62.

5. McGranahan N., Swanton C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 2015;27(1):15–26. DOI: 10.1016/j.ccell.2014.12.001.

6. Gerlinger M., Rowan A. J., Horswell S. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012;366(10):883–92. DOI: 10.1056/NEJMoa1113205.

7. Bettegowda C., Sausen M., Leary R. J. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014;6(224):224ra24. DOI: 10.1126/scitranslmed.3007094.

8. Piotrowska Z., Niederst M. J., Karlovich C. A. et al. Heterogeneity underlies the emergence of EGFRT790 wild-type clones following treatment of T790M-positive cancers with a thirdgeneration EGFR inhibitor. Cancer Discov 2015;5(7):713–22. DOI: 10.1158/2159-8290.CD-15-0399.

9. Diaz L. A. Jr, Williams R. T., Wu J. et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 2012;486(7404):537–40. DOI: 10.1038/nature11219.

10. Misale S., Yaeger R., Hobor S. et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 2012;486(7404):532–6. DOI: 10.1038/nature11156.

11. Al-Mulla F., Going J. J., Sowden E. T. et al. Heterogeneity of mutant versus wild-type Ki- ras in primary and metastatic colorectal carcinomas, and association of codon-12 valine with early mortality. J Pathol 1998;185(2):130–8.

12. Albanese I., Scibetta A. G., Migliavacca M. et al. Heterogeneity within and between primary colorectal carcinomas and matched metastases as revealed by analysis of Ki-ras and p53 mutations. Biochem Biophys Res Commun 2004;325(3):784–91.

13. Artale S., Sartore-Bianchi A., Veronese S. M. et al. Mutations of KRAS and BRAF in primary and matched metastatic sites of colorectal cancer. J Clin Oncol 2008;26(25):4217–9. DOI: 10.1200/JCO.2008.18.7286.

14. Baldus S. E., Schaefer K. L., Engers R. et al. Prevalence and heterogeneity of KRAS, BRAF, and PIK3CA mutations in primary colorectal adenocarcinomas and their corresponding metastases. Clin Cancer Res 2010;16(3):790–9. DOI: 10.1158/1078-0432.CCR-09-2446.

15. Bossard C., Küry S., Jamet P. et al. Delineation of the infrequent mosaicism of KRAS mutational status in metastatic colorectal adenocarcinomas. J Clin Pathol 2012;65(5):466–9. DOI: 10.1136/jclinpath-2011-200608.

16. Brannon A. R., Vakiani E., Sylvester B. E. et al. Comparative sequencing analysis reveals high genomic concordance between matched primary and metastatic colorectal cancer lesions. Genome Biol 2014;15(8):454. DOI: 10.1186/s13059-014-0454-7.

17. Cejas P., Lopez-Gomez M., Aguayo C. et al. KRAS mutations in primary colorectal cancer tumors and related metastases: a potential role in prediction of lung metastasis. PLoS One 2009;4:e8199. DOI: 10.1371/journal.pone.0008199.

18. Cejas P., López-Gómez M., Aguayo C. et al. Analysis of the concordance in the EGFR pathway status between primary tumors and related metastases of colorectal cancer patients: implications for cancer therapy. Curr Cancer Drug Targets 2012;12(2):124–31.

19. Etienne-Grimaldi M. C., Formento J. L., Francoual M. et al. K-Ras mutations and treatment outcome in colorectal cancer patients receiving exclusive fluoropyrimidine therapy. Clin Cancer Res 2008;14(15):4830–5. DOI: 10.1158/1078–0432.CCR-07-4906.

20. Finkelstein S. D., Sayegh R., Christensen S. et al. Genotypic classification of colorectal adenocarcinoma. Cancer 1993;71(12):3827–38.

21. Garm Spindler K. L., Pallisgaard N., Rasmussen A. A. et al. The importance of KRAS mutations and EGF61A4G polymorphism to the effect of cetuximab and irinotecan in metastatic colorectal cancer. Ann Oncol 2009;20(5):879–84. DOI: 10.1093/annonc/mdn712.

22. Gattenlohner S., Etschmann B., Kunzmann V. et al. Concordance of KRAS ⁄ BRAF mutation status in metastatic colorectal cancer before and after anti- EGFR therapy. J Oncol 2009;83:16–26. DOI: 10.1155/2009/831626.

23. He Q., Xu Q., Wu W. et al. Comparison of KRAS and PIK3CA gene status between primary tumors and paired metastases in colorectal cancer. Onco Targets Ther 2016;9:2329–35. DOI: 10.2147/OTT.S97668.

24. Italiano A., Hostein I., Soubeyran I. et al. KRAS and BRAF mutational status in primary colorectal tumors and related metastatic sites: biological and clinical implications. Ann Surg Oncol 2010;17(5):1429–34. DOI: 10.1245/s10434-009-0864-z.

25. Kaneko Y., Kuramochi H., Nakajima G. et al. Degraded DNA may induce discordance of KRAS status between primary colorectal cancer and corresponding liver metastases. Int J Clin Oncol 2014;19(1):113–20. DOI: 10.1007/s10147-012-0507-4.

26. Kawamata H., Yamashita K., Kojo K. et al. Discrepancies between the K-ras mutational status of primary colorectal cancers and corresponding liver metastases are found in codon 13. Genomics 2015;106(2):71–5. DOI: 10.1016/j.ygeno.2015.05.007.

27. Kawamoto Y., Tsuchihara K., Yoshino T. et al. KRAS mutations in primary tumours and post-FOLFOX metastatic lesions in cases of colorectal cancer. Br J Cancer 2012;107(2):340– 4. DOI: 10.1038/bjc.2012.218.

28. Kim M. J., Lee H. S., Kim J. H. et al. Different metastatic pattern according to the KRAS mutational status and sitespecific discordance of KRAS status in patients with colorectal cancer. BMC Cancer 2012;12: 347. DOI: 10.1186/1471-2407-12-347.

29. Kleist B., Kempa M., Novy M. et al. Comparison of neuroendocrine differentiation and KRAS/NRAS/ BRAF/PIK3CA/TP53 mutation status in primary and metastatic colorectal cancer. Int J Clin Exp Pathol 2014;7(9):5927–39.

30. Knijn N., Mekenkamp L. J.M., Klomp M. et al. KRAS mutation analysis: a comparison between primary tumours and matched liver metastases in 305 colorectal cancer patients. Br J Cancer 2011;104(6):1020–6. DOI: 10.1038/bjc.2011.26.

31. Kopetz S., Overman M. J., Chen K. et al. Mutation and copy number discordance in primary versus metastatic colorectal cancer (mCRC). J Clin Oncol 2014;32:5s (suppl; abstr 3509).

32. Lee S., Haq F., Kim D. et al. Comparative genomic analysis of primary and synchronous metastatic colorectal cancers. PLoS One 2014;5(9):e90459. DOI: 10.1371/journal.pone.0090459.

33. Li Z. Z., Bai L., Wang F. et al. Comparison of KRAS mutation status between primary tumor and metastasis in Chinese colorectal cancer patients. Med Oncol 2016;33(7):71. DOI: 10.1007/s12032-016-0787-z.

34. Losi L., Benhattar J., Costa J. Stability of K-ras mutations throughout the natural history of human colorectal cancer. Eur J Cancer 1992;28A(6–7):1115–20.

35. Loupakis F., Pollina L., Stasi I. et al. PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. J Clin Oncol 2009;27(16):2622–9. DOI: 10.1200/JCO.2008.20.2796.

36. Mariani P., Lae M., Degeorges A. et al. Concordant analysis of KRAS status in primary colon carcinoma and matched metastasis. Anticancer Res 2010;30(10):4229–35.

37. Miglio U., Mezzapelle R., Paganotti A. et al. Mutation analysis of KRAS in primary colorectal cancer and matched metastases by means of highly sensitivity molecular assay. Pathol Res Pract 2013;209(4):233–6. DOI: 10.1016/j.prp.2013.02.006.

38. Molinari F., Martin V., Saletti P. et al. Differing deregulation of EGFR and downstream proteins in primary colorectal cancer and related metastatic sites may be clinically relevant. Br J Cancer 2009;100(7):1087–94. DOI: 10.1038/sj.bjc.6604848.

39. Mostert B., Jiang Y., Sieuwerts A. M. et al. KRAS and BRAF mutation status in circulating colorectal tumor cells and their correlation with primary and metastatic tumor tissue. Int J Cancer 2013;133(1):130–41. DOI: 10.1002/ijc.27987.

40. Murata A., Baba Y., Watanabe M. et al. Methylation levels of LINE-1 in primary lesion and matched metastatic lesions of colorectal cancer. Br J Cancer 2013;109(2):408–15. DOI: 10.1038/bjc.2013.289.

41. Oliveira C., Velho S., Moutinho C. et al. KRAS and BRAF oncogenic mutations in MSS colorectal carcinoma progression. Oncogene 2007;26(1):158–63.

42. Oudejans J. J., Slebos R. J., Zoetmulder F. A. et al. Differential activation of ras genes by point mutation in human colon cancer with metastases to either lung or liver. Int J Cancer 1991;49(6):875–9.

43. Paliogiannis P., Cossu A., Tanda F. et al. KRAS mutational concordance between primary and metastatic colorectal adenocarcinoma. Oncol Lett 2014;8(4):1422–6.

44. Park J. H., Han S. W., Oh D. Y. et al. Analysis of KRAS, BRAF, PTEN, IGF1R, EGFR intron 1 CA status in both primary tumors and paired metastases in determining benefit from cetuximab therapy in colon cancer. Cancer Chemother Pharmacol 2011;68(4):1045–5. DOI: 10.1007/s00280-011-1586-z.

45. Perrone F., Lampis A., Orsenigo M. et al. PI3KCA/PTEN deregulation contributes to impaired responses to cetuximab in metastatic colorectal cancer patients. Ann Oncol 2009;20(1):84–90. DOI: 10.1093/annonc/mdn541.

46. Santini D., Loupakis F., Vincenzi B. et al. High concordance of KRAS status between primary colorectal tumors and related metastatic sites: implications for clinical practice. Oncologist 2008;13(12):1270–5. DOI: 10.1634/theoncologist.2008-0181.

47. Schimanski C. C., Linnemann U., Berger M. R. Sensitive detection of K-ras mutations augments diagnosis of colorectal cancer metastases in the liver. Cancer Res 1999;59(20):5169–75.

48. Shen Y. Q., Ye Y. B., Zheng X. W. et al. K-ras mutations in colorectal cancer at different stages. Tumor 2010;30:134–7.

49. Siyar E. A., Demirci U., Cakmak Oksuzoglu B. et al. KRAS discordance between primary and metastatic tumor in patients with metastatic colorectal carcinoma. J BUON 2015;20(1):128–35.

50. Suchy B., Zietz C., Rabes H. M. K-ras point mutations in human colorectal carcinomas: Relation to aneuploidy and metastasis. Int J Cancer 1992;52(1):30–3.

51. Thebo J. S., Senagore A. J., Reinhold D. S. et al. Molecular staging of colorectal cancer: K- ras mutation analysis of lymph nodes upstages Dukes B patients. Dis Colon Rectum 2000;43(2):155–9; discussion 159–62.

52. Tie J., Lipton L., Desai J. et al. KRAS mutation is associated with lung metastasis in patients with curatively resected colorectal cancer. Clin Cancer Res 2011;17(5):1122–30. DOI: 10.1158/1078–0432.CCR-10-1720.

53. Vakiani E., Janakiraman M., Shen R. et al. Comparative genomic analysis of primary versus metastatic colorectal carcinomas. J Clin Oncol 2012;30(24):2956–62. DOI: 10.1200/JCO.2011.38.2994.

54. Vignot S., Lefebvre C., Frampton G. M. et al. Comparative analysis of primary tumour and matched metastases in colorectal cancer patients: evaluation of concordance between genomic and transcriptional profiles. Eur J Cancer 2015;51(7):791–9. DOI: 10.1016/j.ejca.2015.02.012.

55. Voutsina A., Tzardi M., Kalikaki A. et al. Combined analysis of KRAS and PIK3CA mutations, MET and PTEN expression in primary tumors and corresponding metastases in colorectal cancer. Mod Pathol 2013;26(2):302–13. DOI: 10.1038/modpathol.2012.150.

56. Watanabe T., Kobunai T., Yamamoto Y. et al. Heterogeneity of KRAS status may explain the subset of discordant KRAS status between primary and metastatic colorectal cancer. Dis Colon Rectum 2011;54(9):1170–78. DOI: 10.1097/DCR.0b013e31821d37a3.

57. Weber J. C., Meyer N., Pencreach E. et al. Allelotyping analyses of synchronous primary and metastasis CIN colon cancers identified different subtypes. Int J Cancer 2007;120(3):524–32.

58. Xian H. B., Yu H. B., Zhang J. R. Comparison of the grade of concordance in terms of K-ras status between primaries and related liver metastases in colorectal cancer. Chin J Cancer Prev Treat 2010;12:926–9.

59. Zauber P., Sabbath-Solitare M., Marotta S. P., Bishop D. T. Molecular changes in the Ki-ras and APC genes in primary colorectal carcinoma and synchronous metastases compared with the findings in accompanying adenomas. Mol Pathol 2003;56(3):137–40.

60. Vermaat J. S., Nijman I. J., Koudijs M. J. et al. Primary colorectal cancers and their subsequent hepatic metastases are genetically different: implications for selection of patients for targeted treatment. Clin Cancer Res 2012;18(3):688–99. DOI: 10.1158/1078-0432.CCR-11-1965.

61. Schafroth C., Galván J. A., Centeno I. et al. VE1 immunohistochemistry predicts BRAF V600E mutation status and clinical outcome in colorectal cancer. Oncotarget 2015;6(39):41453–63. DOI: 10.18632/oncotarget.6162.

62. Tougeron D., Cortes U., Ferru A. et al. Epidermal growth factor receptor(EGFR) and KRAS mutations during chemotherapy plus anti-EGFR monoclonal antibody treatment in metastatic colorectal cancer. Cancer Chemother Pharmacol 2013;72(2):397–403. DOI: 10.1007/s00280-013-2211-0.

63. Gonzalez de Castro D., Angulo B., Gomez B. et al. A comparison of three methods for detecting KRAS mutations in formalin-fixed colorectal cancer specimens. Br J Cancer 2012;107(2):345–51. DOI: 10.1038/bjc.2012.259.

64. Tougeron D., Lecomte T., Pagès J. C. et al. Effect of low-frequency KRAS mutations on the response to anti-EGFR therapy in metastatic colorectal cancer. Ann Oncol 2013;24(5):1267–73. DOI: 10.1093/annonc/mds620.

65. Baas J. M., Krens L. L., Guchelaar H. J. et al. Concordance of predictive markers for EGFR inhibitors in primary tumors and metastases in colorectal cancer: a review. Oncologist 2011;16(9): 1239–49. DOI: 10.1634/theoncologist.2011-0024.

66. Han C. B., Li F., Ma J. T., Zou H. W. Concordant KRAS mutations in primary and metastatic colorectal cancer tissue specimens: a meta-analysis and systematic review. Cancer Invest 2012;30(10):741–7. DOI: 10.3109/07357907.2012.732159.

67. Mao C., Wu X. Y., Yang Z. Y. et al. Concordant analysis of KRAS, BRAF, PIK3CA mutations, and PTEN expression between primary colorectal cancer and matched metastases. Sci Rep 2015;5:8065. DOI: 10.1038/srep08065.

68. Graham D. M., Arseneault M., Sukhai M. A. et al. Analysis of clonal evolution in colorectal cancer. J Clin Oncol 2014;32:5s(suppl; abstr 3510).

69. Fabbri F., Carloni S., Zoli W. et al. Detection and recovery of circulating colon cancer cells using a dielectrophoresis-based device: KRAS mutation status in pure CTCs. Cancer Lett 2013;335(1):225–31. DOI: 10.1016/j.canlet 2013.02.015.

70. Tortola S., Steinert R., Hantschick M. et al. Discordance between K-ras mutations in bone marrow micrometastases and the primary tumor in colorectal cancer. J Clin Oncol 2001;19(11):2837–43.


Для цитирования:


Федянин М.Ю., Трякин А.А., Покатаев И.А., Тюляндин С.А. Метаанализ исследований, посвященных изучению конкордантности мутационного статуса генов между первичной опухолью и метастазами рака толстой кишки. Тазовая хирургия и онкология. 2017;7(1):27-41. https://doi.org/10.17650/2220-3478-2017-7-1-27-41

For citation:


Fedyanin M.Y., Tryakin A.A., Pokataev I.A., Tyulyandin S.A. Meta-analysis of clinical trials on concordance of mutational stauts of primary tumour and distant metastases of colorectal cancer. Pelvic Surgery and Oncology. 2017;7(1):27-41. (In Russ.) https://doi.org/10.17650/2220-3478-2017-7-1-27-41

Просмотров: 3983


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2686-9594 (Online)