Preview

Тазовая хирургия и онкология

Расширенный поиск

Влияние микробиоты человека на развитие колоректального рака

https://doi.org/10.17650/2686-9594-2019-9-3-11-17

Полный текст:

Аннотация

В статье представлен обзор литературы о влиянии микробиома организма в развитии онкологических заболеваний. Приведены данные о наиболее часто встречающихся бактериях у больных раком толстой кишки: Fusobacterium nucleatum, Bacteroidеs fragilis и некоторых штаммов Escherichia coli. Трансплантация фекальной микробиоты — это экспериментальный новый подход, включающий обмен кишечной микробиотой между людьми. Идентификация онкогенных штаммов бактерий значительно расширит наши возможности в диагностике и предотвращении развития злокачественных образований толстой кишки.

Об авторах

С. О. Кочкина
Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина Минздрава России
Россия

Кочкина Софья Олеговна.

115478 Москва, Каширское шоссе, 24.



С. С. Гордеев
Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина Минздрава России
Россия

115478 Москва, Каширское шоссе, 24.



З. З. Мамедли
Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина Минздрава России
Россия

115478 Москва, Каширское шоссе, 24.



Список литературы

1. de Martel C., Ferlay J., Franceschi S. et al. Global burden of cancer attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 2012;13(6):607—15. DOI: 10.1016/S1470-2.045(12)70137-7.

2. Garrett W.S. Cancer and the microbiota. Science 2015;348:80-6.

3. Gagnaire A., Nadel B., Raoult D. et al. Collateral damage: insights into bacterial mechanisms that predispose host cells to cancer. Nat Rev Microbiol 2017;15:109-28.

4. Roy S., Trinchieri G. Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer 2017;17:271-85.

5. Zitvogel L., Daillere R., Roberti M.P. et al. Anticancer effects of the microbiome and its products. Nat Rev Microbiol 2017;15:109-28.

6. Lasry A., Zinger A., Ben-Neriah Y. In-flammatory networks underlying colorectal cancer. Nat Immunol 2016;7(3):230-40.

7. Dalal S.R., Chang E.B. The microbial ba-sis of inflammatory bowel diseases. J Clin Invest 2014;24(10):4190-6.

8. Tamboli C.P., Neut C., Desreumaux P., Colombel J.F. Dysbiosis in inflammatory bowel disease. Gut 2004;53(1):1—4.

9. Kaiko G.E., Stappenbeck T.S. Host-mi-crobe interactions shaping the gastrointestinal environment. Trends Immunol 2014;5(11):538-48.

10. Gilbert J.A., Quinn R.A., Debelius J. et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 2016;535:94-103.

11. Zitvogel L., Ayyoub M., Routy B., Kroemer G. Microbiome and anticancer immunosurveillance. Cell 2016;165:276-87.

12. Nakatsu G., Li X., Zhou H. et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat. Commun 2015;6:8727.

13. Yu G., Gail M.H., Consonni D. et al. Characterizing human lung tissue micro-biota and its relationship to epidemiologi-cal and clinical features. Genome Biol 2016;17(1):163.

14. Guerrero-Preston R., Godoy-Vitorino F., Jedlicka A. et al. 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment. Oncotarget 2016;7:51320-34.

15. Hieken T.J., Chen J., Hoskin T.L. et al. The microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci Rep 2016;6:30751.

16. Rahbar A., Peredo I., Solberg N.W et al. Discordant humoral and cellular immune responses to cytomegalovirus (CMV) in glioblastoma patients whose tumors are positive for CMV. Oncoimmunology 2015;4:e982391.

17. O’Hara A.M., Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006;7(7):688-93.

18. Hakansson A., Molin G. Gut microbiota and inflammation. Nutrients 2011;3(6):637-82.

19. Jandhyala S.M., Talukdar R., Subramanyam C. et al. Role of the normal gut microbiota. World J Gastroenterol 2015;21(29):8787-803.

20. Guinane C.M., Cotter P.D. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Ther Adv Gastroenterol 2013;6(4):295-308.

21. Wang J., Jia H. Metagenome-wide association studies: finemining the microbiome. Nat Rev Microbiol 2016;14(8):508—22.

22. Feng Q., Liang S., Jia H. et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun 2015;6:6528.

23. Kostic A.D., Gevers D., Pedamallu C.S. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 2012;22:292-8.

24. Castellarin M., Warren R.L., Freeman J.D. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 2012;22:299-306.

25. Leung A., Tsoi H., Yu J. Fusobacterium and Escherichia: models of colorectal cancer driven by microbiota and the utility of microbiota in colorectal cancer screening. Expert Rev Gastroenterol Hepatol 2015;9(5):651 —7.

26. Nakatsu G., Li X., Zhou H. et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun 2015;6:8727.

27. Ahn J., Sinha R., Pei Z. et al. Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst 2013;105:1907-11.

28. Viljoen K.S., Dakshinamurthy A., Gold-berg P., Blackburn J.M. Quantitative profiling of colorectal cancer-associated bacteria reveals associations between Fusobacterium spp., enterotoxigenic Bacteroidesfragilis (ETBF) and clinicopathological features of colorectal cancer. PLoS One 2015;10:e0119462.

29. Flanagan L., Schmid J., Ebert M. et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur J Clin Microbiol Infect Dis 2014;33:1381-90.

30. Mima K., Sukawa Y., Nishihara R. et al. Fusobacterium nucleatum and T Cells in Colorectal Carcinoma. JAMA Oncol 2015;1:653-61.

31. Nosho K., Sukawa Y., Adachi Y. et al. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J Gastroenterol 2016;22:557-66.

32. Liang Q., Chiu J., Chen Y. et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clin Cancer Res 2017;23:2061-70.

33. Ai L., Tian H., Chen Z. et al. Systematic evaluation of supervised classifiers for fecal microbiota-based prediction of colorectal cancer. Oncotarget 2017;8:9546-56.

34. Wu S., Rhee K.J., Albesiano E. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nature Med 2009;15:1016-22.

35. Sears C.L., Geis A.L., Housseau F. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J Clin Invest 2014;124:4166-72.

36. Denizot J., Desrichard A., Agus A. et al. Diet-induced hypoxia responsive element demethylation increases CEACAM6 expression, favouring Crohn’s disease-associated Escherichia coli colonisation. Gut 2015;64:428-37.

37. Bonnet M., Buc E., Sauvanet P. et al. Colonization of the human gut by Escherichia coli and colorectal cancer risk. Clin Cancer Res 2014;20:859-67.

38. Cougnoux A., Dalmasso G., Martinez R. et al. Bacterial genotoxin colibactin pro-motes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut 2014;63:1932-42.

39. Wylie K.M., Truty R.M., Sharpton T.J. et al. Novel bacterial taxa in the human microbiome. PloS One 2012;7(6):e35294.

40. Kang M., Martin A. Microbiome and colorectal cancer: Unraveling host-microbiota interactions in colitis-associated colorectal cancer development. Seminars in immunology. Academic Press, 2017. Vol. 32. Pp. 3-13.

41. Goulas T., Arolas J.L., Gomis-Ruth F.X. Structure: function and latency regulation of a bacterial enterotoxin potentially de-rived from a mammalian adamalysin/ADAM xenolog. Proc Natl Acad Sci USA 2011;108(5):1856-61.

42. Purcell R.V., Pearson J., Aitchison A.et al. Colonization with enterotoxigenic Bacteroides fragilis is associated with early-stage colorectal neoplasia. PLoS One 2017;12(2):pe0171602.

43. Wei Z., Cao S., Liu S. et al. Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients' survival? A pilot study on relevant mechanism. Oncotarget 2016;7(29):46158-72.

44. Kasai C., Sugimoto K., Moritani I. et al. Comparison of human gut microbiota in control subjects and patients with colorectal carcinoma in adenoma: terminal restriction fragment length polymorphism and next-generation sequencing analyses. Oncol Rep 2016;35(1):325-33.

45. Boleij A., Hechenbleikner E.M., Goodwin A.C. et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis 2015;60(2):208-15.

46. Housseau F., Wu S., Wick E.C. et al. Re-dundant innate and adaptive sources of IL17 production drive colon tumorigenesis. Cancer Res 2016;76(8):2115-24.

47. Deng Z., Mu J., Tseng M., Wattenberg B. et al. Enterobacteria-secreted particles in-duce production of exosome like S1P-containing particles by intestinal epithelium to drive Th17-mediated tumorigenesis. Nat Commun 2015;6:6956.

48. Wang K., Kim M.K., di Caro G. et al. In-terleukin-17 receptor a signaling in transformed enterocytes promotes early colorectal tumorigenesis. Immunity 2014;41(6):1052—63.

49. Chae WJ., Gibson T.F., Zelterman D. et al. Ablation of IL-17A abrogates progression of spontaneous intestinal tumorigenesis. Proc Natl Acad Sci USA 2010;107(12):5540—4.

50. Hyun Y.S., Han D.S., Lee A.R. et al. Role of IL-17A in the development of colitis-associated cancer. Carcinogenesis 2012;33(4):931—6.

51. Goodwin A.C., Destefano Shields C.E., Wu S. et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci USA 2011;108(37):15354—9.

52. Irrazabal T., Martin A. T-regulatory cells gone bad: an oncogenic immune response against enterotoxigenic B. fragilis infection leads to colon cancer. Cancer Discov 2015;5(10):1021—3.

53. Geis A.L., Fan H., Wu X. et al. Regulatory T-cell response to enterotoxigenic bacteroides fragilis colonization triggers IL17-dependent colon carcinogenesis. Cancer Discov 2015;5(10):1098—9.

54. Han Y.W. Fusobacterium nucleatum: a commensal-turned pathogen. Curr Opin Microbiol 2015;23:141-7.

55. Ye X., Wang R., Bhattacharya R. et al. Fusobacterium nucleatum subspecies animalis influences pro-inflammatory cytokine expression and monocyte activation in human colorectal tumors. Cancer Prev Res (Phila) 2017;10(7):398—409.

56. Yu J., Chen Y., Fu X. et al. Invasive Fuso¬bacterium nucleatum may play a role in the carcinogenesis of proximal colon cancer through the serrated neoplasia pathway. Int J Cancer 2016;139(6):1318—26.

57. Kostic A.D., Chun E., Robertson L. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microb 2013;14(2):207—15.

58. Mima K., Nishihara R., Qian Z.R. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 2016;65(12):1973—80.

59. Rubinstein M.R., Wang X., Liu W. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesion. Cell Host Microb 2013;14(2):195—206.

60. Tsoi H., Chu E.S.H., Zhang X. et al. Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice. Gastroenterology 2017;152(6):1419—33.

61. Yazici C., Wolf P.G., Kim H. et al. Racedependent association of sulfidogenic bacteria with colorectal cancer. Gut 2017;66(11):1983—94.

62. Lu R., Wu S., Zhang YG. et al. Enteric bacterial protein AvrA promotes colonic tumorigenesis and activates colonic betacatenin signaling pathway. Oncogenesis 2014;3:e105.

63. Lu R., Wu S., Zhang Y.G. et al. Salmonella protein AvrA activates the STAT3 signaling pathway in colon cancer. Neo-plasia 2016;18(5):307—16.

64. Elatrech I., Marzaioli V., Boukemara H. et al. Escherichia coli LF82 differentially regulates ROS production and mucin expression in intestinal epithelial T84 cells: implication of NOX1. Inflamm Bowel Dis 2015;21(5):1018—26.

65. Tomkovich S., Yang Y., Winglee K. et al. Locoregional effects of microbiota in a preclinical model of colon carcinogenesis. Cancer Res 2017;77(10):2620—32.

66. Arthur J.C., Perez-Chanona E., Mhhibauer M. et al. Intestinal inflammation targets cancer-inducing activity of the microbio¬ta. Science 2012;338(6103):120—3.

67. Cougnoux A., Delmas J., Gibold L. et al. Small-molecule inhibitors prevent the genotoxic and protumoural effects induced by colibactin-producing bacteria. Gut 2016;65(2):278—85.

68. Arthur J.C., Gharaibeh R.Z., Mhhlbauer M. et al. Microbial genomic analysis reveals the essential role of in flammation in bacteria-induced colorectal cancer. Nat Commun 2014;5:4724.

69. Bonnet M., Buc E., Sauvanet P. et al. Colonization of the human gut by Escherichia coli and colorectal cancer risk. Clin Cancer Res 2014;20(4):859—67.

70. McKenney P.T., Pamer E.G. From hype to hope: the gut microbiota in enteric infectious disease. Cell 2015;163: 1326—32.

71. Moayyedi P., Surette M.G., Kim P.T. et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 2015;149:102—9.

72. Kakihana K., Fujioka Y., Suda W. et al. Fecal microbiota transplantation for patients with steroid-resistant/dependent acute graft versus-host disease of the gut. Blood 2016;128:2083—8.

73. Bel S., Elkis Y., Elifantz H. et al. Reprogrammed and transmissible intestinal microbiota confer diminished susceptibility to induced colitis in TMF—/—mice. Proc Natl Acad Sci USA 2014;11:4964—9.


Для цитирования:


Кочкина С.О., Гордеев С.С., Мамедли З.З. Влияние микробиоты человека на развитие колоректального рака. Тазовая хирургия и онкология. 2019;9(3):11-17. https://doi.org/10.17650/2686-9594-2019-9-3-11-17

For citation:


Kochkina S.O., Gordeev S.S., Mamedli Z.Z. Role of human microbiota in the development of colorectal cancer. Pelvic Surgery and Oncology. 2019;9(3):11-17. (In Russ.) https://doi.org/10.17650/2686-9594-2019-9-3-11-17

Просмотров: 88


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2413-0583 (Print)
ISSN 2686-9594 (Online)