Preview

Онкологическая колопроктология

Расширенный поиск

Роль микросателлитной нестабильности при раке толстой кишки

https://doi.org/10.17650/2220-3478-2012-0-3-321-338

Полный текст:

Аннотация

Рак толстой кишки (РТК) занимает лидирующие позиции по заболеваемости и смертности от злокачественных опухолей в России и в мире. Развитие молекулярной биологии привело к расшифровке механизмов канцерогенеза и прогрессирования опухоли. Данные процессы требуют аккумуляции генетических и эпигенетических изменений в опухолевой клетке. Канцерогенез РТК характеризуется накоплением мутаций в генах, контролирующих рост и дифференцировку эпителиальных клеток, что приводит к их генетической нестабильности. Одним из вариантов данных генетических изменений является микросателлитная нестабильность, которая характеризуется нарушением механизма репарации неспаренных оснований ДНК. Это приводит к тому, что мутации в геноме клетки накапливаются со значительно большей скоростью, чем в нормальном состоянии. Эта неспособность к репарации неспаренных оснований ДНК может быть легко определена по длине микросателлитов ДНК. Данные изменения получили название микросателлитной нестабильности. Они выявляются как при наследственном РТК, так и при спорадических опухолях. Именно микросателлитной нестабильности, ее прогностическому и предикторному значению при РТК и посвящен данный обзор.

 

Об авторах

М. Ю. Федянин
ФГБУ «РОНЦ им. Н.Н. Блохина»РАМН, Москва
Россия


А. А. Трякин
ФГБУ «РОНЦ им. Н.Н. Блохина»РАМН, Москва
Россия


С. А. Тюляндин
ФГБУ «РОНЦ им. Н.Н. Блохина»РАМН, Москва
Россия


Список литературы

1. Modrich P. Mechanisms in eukaryotic mismatch repair. J Biol Chem 2006;

2. :30305-9.

3. Liu B., Nikolaides N.C., Markowitz S. et al. Mismatch repair gene defects

4. in sporadic colorectal cancers with microsatellite instability. Nat Genet 1995; 9(1):48-55.

5. Wang J., Sun L., Myeroff L. et al. Demonstration that mutation of the type II

6. transforming growth factor beta receptor inactivates its tumor suppressor activity in

7. replication error-positive colon carcinoma cells. J Biol Chem 1995;270:22044-9.

8. Duval A., Hamelin R. Mutations at coding repeat sequences in mismatch repair-

9. deficient human cancers: toward a new concept of target genes for instability. Cancer

10. Res 2002;62(9):2447-54.

11. Zaanan A.,Meunier K., Sangar F. et al. Microsatellite instability in colorectal

12. cancer: from molecular oncogenic mechanisms to clinical implications. Cell

13. Oncol 2011;34(3):155-76.

14. Mirabelli-Primdahl L., Gryfe R., Kim H. et al. Beta-catenin mutations are specific

15. for colorectal carcinomas with microsatellite instability but occur in endometrial

16. carcinomas irrespective of mutator pathway. Cancer Res 1999;59(14):3346-51.

17. Miyaki M., Iijima T., Kimura J. et al. Frequent mutation of beta-catenin and APC

18. genes in primary colorectal tumors from patients with hereditary nonpolyposis

19. colorectal cancer. Cancer Res 1999; 59(18):4506-9.

20. Thibodeau S.N., Bren G., Schaid D. Microsatellite instability in cancer of the

21. proximal colon. Science 1993;260:816-9.

22. Umar A., Boland C.R., Terdinam J.P. et al. Revised Bethesda Guidelines for

23. hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite

24. instability. J Natl Cancer Inst 2004;96:261-8.

25. Boland C.R., Thibodeau S.N., Hamilton S.R. et al. A National Cancer

26. Institute workshop on microsatellite instability for cancer detection and familial

27. predisposition: development of international criteria for determination of microsatellite

28. instability in colorectal cancer. Cancer Res 1998;58(22):5248-57.

29. Tejpar S. The multidisciplinary management of gastrointestinal cancer. The use

30. of molecular markers in the diagnosis and treatment of colorectal cancer. Best Pract

31. Res Clin Gastroenterol 2007;21:1071-87.

32. Benatti P., Gafа R., Barana D. et al. Microsatellite instability and colorectal

33. cancer prognosis. Clin Cancer Res 2005; 11:8332-40.

34. Raut C., Pawlik T., Rodriguez-Bigas M.A. Clinicopathologic features in colorectal cancer patients with microsatellite instability. Mutat Res 2004; 568:275-82.

35. Warusavitarne J., Schnitzler M. The role of chemotherapy in microsatellite unstable

36. (MSI-H) colorectal cancer. Int J Colorectal Dis 2007;22(7):739-48.

37. Ogino S., Nosho K., Kirkner G.J. et al. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut 2009;58:90-6.

38. Nagasaka T., Koi M., Kloor M. et al. Mutations in both KRAS and BRAF may

39. contribute to the methylator phenotype in colon cancer. Gastroenterology 2008; 134:1950-60.

40. Rajagopalan H., Bardelli A., Lengauer C. et al. Tumorigenesis: RAF/RAS oncogenes

41. and mismatchrepair status. Nature 2002; 418:934.

42. Boland C.R. Evolution of the nomenclature for the hereditary colorectal cancer syndromes. Fam Cancer 2005; 4:211-8.

43. Vasen H.F., Mцslein G., Alonso A. et al. Guidelines for the clinical management of

44. Lynch syndrome (hereditary non-polyposis cancer). J Med Genet 2007;44(6):353-62.

45. Peltomдki P. Lynch syndrome genes. Fam Cancer 2005;4(3):227-32.

46. Peltomдki P., Vasen H.F. Mutations predisposing to hereditary nonpolyposis

47. colorectal cancer: database and results of a collaborative study. The International

48. Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer. Gastroenterology 1997;113(4):1146-58.

49. Huang J., Kuismanen S.A., Liu T. et al. MSH6 and MSH3 are rarely involved in

50. genetic predisposition to nonpolypotic colon cancer. Cancer Res 2001;61(4):1619-23.

51. de Jong A.E., van Puijenbroek M., Hendriks Y. et al. Microsatellite instability,

52. immunohistochemistry, and additional PMS2 staining in suspected hereditary

53. nonpolyposis colorectal cancer. Clin Cancer Res 2004;10:972-80.

54. Halvarsson B., Lindblom A., Rambech E. et al. The added value of PMS2 immunostaining in the diagnosis of hereditary nonpolyposis colorectal cancer. Fam Cancer 2006;5:353-8.

55. Hendriks Y.M., Jagmohan-Changur S., van der Klift H.M. et al. Heterozygous

56. mutations in PMS2 cause hereditary nonpolyposis colorectal carcinoma (Lynch syndrome). Gastroenterology 2006;130:312-22.

57. Hienonen T., Laiho P., Salovaara R. et al. Little evidence for involvement of MLH3

58. in colorectal cancer predisposition. Int J Cancer 2003;106:292-6.

59. Llor X., Pons E., Xicola R.M. et al. Differential features of colorectal cancers fulfilling Amsterdam criteria without involvement of the mutator pathway. Clin Cancer Res 2005;11:7304-10.

60. Gazzoli I., Loda M., Garber J. et al. A hereditary nonpolyposis colorectal carcinoma case associated with hypermethylation of the MLH1 gene in normal tissue and loss of heterozygosity

61. of the unmethylated allele in the resulting microsatellite instability-high tumor. Cancer

62. Res 2002;62:3925-8.

63. Ligtenberg M.J., Kuiper R.P., Chan T.L. et al. Heritable somatic methylation and

64. inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3￿ exons of

65. TACSTD1. Nat Genet 2009;41(1):112-7.

66. Watson P., Vasen H.F., Mecklin J.P. et al. The risk of extra-colonic, extra-endometrial

67. cancer in the Lynch syndrome. Int J Cancer 2008;123:444-9.

68. Vasen H.F., Mecklin J.P., Khan P.M. et al. The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC). Dis Colon Rectum

69. ;34(5):424-5.

70. Vasen H.F., Watson P., Mecklin J.P. et al. New clinical criteria for hereditary

71. nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 1999;116:1453-6.

72. Lindor N.M., Rabe K., Petersen G.M. et al. Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency: familial colorectal cancer type X. JAMA 2005;

73. :1979-85.

74. Kane M.F., Loda M., Gaida G.M. et al. Methylation of the hMLH1 promoter

75. correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch

76. repair-defective human tumor cell lines. Cancer Res 1997;57:808-11.

77. Veigl M.L., Kasturi L., Olechnowicz J. et al. Biallelic inactivation of hMLH1

78. by epigenetic gene silencing, a novel mechanism causing human MSI cancers.

79. Proc Natl Acad Sci U S A 1998; 95(15):8698-702.

80. Wang L., Cunningham J.M., Winters J.L. et al. BRAF mutations in colon cancer are

81. not likely attributable to defective DNA mismatch repair. Cancer Res 2003;63:5209￿12.

82. Sinicrope F.A., Rego R.L., Halling K.C. et al. Prognostic impact of microsatellite instability and DNA ploidy in human colon carcinoma patients. Gastroenterology 2006;

83. :729-37.

84. Roth A.D., Tejpar S., Delorenzi M. et al. Prognostic role of KRAS and BRAF in stage

85. II and III resected colon cancer: results of the translational study on the PETACC-3,

86. EORTC 40993, SAKK 60-00 trial. J Clin Oncol 2010;28(3):466-74.

87. Kakar S., Burgart L.J., Thibodeau S.N. et al. Frequency of loss of hMLH1

88. expression in colorectal carcinoma increases with advancing age. Cancer 2003;97:1421-7.

89. Koopman M., Kortman G.A., Mekenkamp L. et al. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br J Cancer 2009;100:266-73.

90. Gryfe R., Kim H., Hsieh E.T. et al. Tumour microsatellite instability and clinical

91. outcome in young patients with colorectal cancer. N Engl J Med 2000;342:69-77.

92. Ribic C.M., Sargent D.J., Moore M.J. et al. Tumor microsatellite-instability status

93. as a predictor of benefit from fluorouracilbased adjuvant chemotherapy for colon

94. cancer. N Engl J Med 2003;349(3):247-57.

95. Popat S., Hubner R., Houlston R.S. Systematic review of microsatellite instability

96. and colorectal cancer prognosis. J Clin Oncol 2005;23:609-18.

97. Roth A.D., Tejpar S., Yan P. et al. Stage-specific prognostic value of molecular

98. markers in colon cancer: Results of the translational study on the PETACC3 — EORTC 40993-SAKK 60-00 trial. J Clin Oncol (meeting abstract) 2009;27:4002.

99. Kerr D., Gray R., Quirke P. et al. A quantitative multigene RT-PCR assay for prediction of recurrence in stage II colon cancer: selection of the gene in four large studies and results of the independent, prospectively designed QUASAR validation study. J Clin Oncol 2009;25(15 Suppl):169s.

100. Sargent D.J., Marsoni S., Monges G. et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 2010;28(20):3219-26.

101. Carethers J.M., Chauhan D.P., Fink D. et al. Mismatch repair proficiency and

102. in vitro response to 5-fluorouracil. Gastroenterology 1999;117(1):123-31.

103. Fischer F., Baerenfaller K., Jiricny J. 5-fluorouracil is efficiently removed from

104. DNA by the base excision and mismatch repair systems. Gastroenterology 2007;

105. (6):1858-68.

106. Elsaleh H., Iacopetta B. Microsatellite instability is a predictive marker for survival

107. benefit from adjuvant chemotherapy in a population-based series of stage III

108. colorectal carcinoma. Clin Colorectal Cancer 2001;1(2):104-9.

109. Jover R., Zapater P., Castells A. et al. The efficacy of adjuvant chemotherapy with

110. -fluorouracil in colorectal cancer depends on the mismatch repair status. Eur J Cancer

111. ;45:365-73.

112. Bertagnolli M.M., Niedzwiecki D., Compton C.C. et al. Microsatellite instability predicts improved response to adjuvant therapy with irinotecan, fluorouracil, and leucovorin in stage III

113. colon cancer: Cancer and Leukemia Group B Protocol 89803. J Clin Oncol 2009;27(11):1814-21.

114. Carethers J.M., Smith E.J., Behling C.A. et al. Use of 5-flourouracil and survival

115. in patients with microsatellite-unstable colorectal cancer. Gastroenterology 2004; 126(2):394-401.

116. Barratt P.L., Seymour M.T., Stenning S.P. et al. DNA marcers predicting benefit from adjuvant fluorouracil in patients with colon cancer: a molecular study. Lancet 2002;360(9343):1381-91.

117. Storojeva I., Boulay J.L., Heinimann K. et al. Prognostic and predictive relevance of

118. microsatellite instability in colorectal cancer. Oncol Rep 2005;14(1):241-9.

119. Des Guetz G., Schischmanoff O., Nicolas P. et al. Does microsatellite instability predict the efficacy of adjuvant chemotherapy in colorectal cancer? A systematic review with meta-analysis.

120. Eur J Cancer 2009;45(10):1890-6.

121. Guastadisegni C., Colafranceschi M., Ottini L. et al. Microsatellite instability as a marker of prognosis and response to therapy: meta-analysis of colorectal cancer survival data. Eur J Cancer 2010; 46(15):2788-98.

122. Liang J.T., Huang K.C., Lai H.S. et al. High-frequency microsatellite instability predicts better chemosensitivity to high-dose 5-fluorouracil and leucovorin chemotherapy for stage IV sporadic colorectal cancer after palliative bowel resection. Int J Cancer 2002;101(6):519-25.

123. Kim G.P., Colangelo L.H., Wieand H.S. et al. Prognostic and predictive roles of highdegree microsatellite instability in colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project Collaborative Study. J Clin Oncol 2007;25(7):767-72.

124. Fink D., Zheng H., Nebel S. et al. In vitro and in vivo resistance to cisplatine in cells that have lost DNA mismatch repair. Cancer Res 1997;57(10):1841-5.

125. Vilar E., Scaltriti M., Balmaсa J. et al. Microsatellite instability due to hMLH1 deficiency is associated with increased cytotoxicityto irinotecan in human colorectal cancer cell lines. Br J Cancer 2008;99(10):1607-12.

126. Fallik D., Borrini F., Boige V. et al. Microsatellite instability is a predictive factor of the tumor response to irinotecan in patient with advanced colorectal cancer. Cancer Res 2003;63(18):5738-44.

127. Mishima M., Samimi G., Kondo A. et al. The cellular pharmacology of oxaliplatin resistance. Eur J Cancer 2002; 38(10):1405-12.

128. Kim S.T., Lee J., Park S.H. et al. Clinical impact of microsatellite instability in colon cancer following adjuvant FOLFOX therapy. Cancer Chemother Pharmacol 2010; 66:659-67.

129. Zaanan A., Cuilliere-Dartigues P., Guilloux A. et al. Impact of p53 expression and microsatellite instability on stage III colon cancer disease-free survival in patients treated by 5-fluorouracil and leucovorin with or without oxaliplatin. Ann Oncol 2010; 21(4):772-80.

130. Jacob S., Aguado M., Fallik D. et al. The role of the DNA mismatch repair system in the cytotoxicity of the topoisomerase inhibitors camptothecin and etoposide to human colorectal cancer cells. Cancer Res 2001;61(17):6555-62.

131. Prolla T.A. DNA mismatch repair and cancer. Curr Opin Cell Biol 1998;10(3): 311-6.

132. Fedier A., Schwarz V.A., Walt H. et al. Resistance to topoisomerase poisons due to loss of DNA mismatch repair. Int J Cancer 2001;93(4):571-6.

133. Kim J., Hong Y., Lee J. et al. Association between deficient mismatch repair system and efficacy to irinotecan containing first-line chemotherapy in patients with sporadic metastatic colorectal cancer. ASCO Annual Meeting 2010, Abstract 3579.


Для цитирования:


Федянин М.Ю., Трякин А.А., Тюляндин С.А. Роль микросателлитной нестабильности при раке толстой кишки. Онкологическая колопроктология. 2012;(3):19-25. https://doi.org/10.17650/2220-3478-2012-0-3-321-338

For citation:


Fedyanin M.Y., Tryakin A.A., Tjulandin S.A. Role of microsatellite instability in colon cancer. Colorectal Oncology. 2012;(3):19-25. (In Russ.) https://doi.org/10.17650/2220-3478-2012-0-3-321-338

Просмотров: 4113


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-3478 (Print)
ISSN 2413-0583 (Online)