Preview

Онкологическая колопроктология

Расширенный поиск

БИОЛОГИЧЕСКИЕ МАРКЕРЫ ЭФФЕКТИВНОСТИ ПРЕДОПЕРАЦИОННОЙ ХИМИОЛУЧЕВОЙ ТЕРАПИИ МЕСТНО-РАСПРОСТРАНЕННОГО РАКА ПРЯМОЙ КИШКИ

https://doi.org/10.17650/2220-3478-2013-0-4-12-22

Полный текст:

Аннотация

Сочетание хирургического и предоперационного химиолучевого лечения является основой лечебной тактики больных местно-распространенным раком прямой кишки. Тем не менее у ряда пациентов не удается достигнуть ответа на лечение. В настоящее время широко проводится поиск биологических маркеров эффективности предоперационной химиолучевой терапии при местно-распространенном раке прямой кишки. Уделяется внимание компонентам различных сигнальных путей опухолевой клетки (EGFR-путь, Wnt-путь), клеточного цикла и апоптоза, стромы опухоли. Проведено несколько исследований с применением микрочипирования ДНК. В настоящей обзорной статье рассматривается предикторное значение данных биологических маркеров.

Об авторах

М. Ю. Федянин
ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» РАМН, Москва
Россия
Отделение клинической фармакологии и химиотерапии


А. А. Трякин
ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» РАМН, Москва
Россия
Отделение клинической фармакологии и химиотерапии


С. А. Тюляндин
ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» РАМН, Москва
Россия
Отделение клинической фармакологии и химиотерапии


Список литературы

1. Goldstein N.S., Armin M. Epidermal growth factor receptor immunohistochemical reactivity in patients with American Joint Committee on Cancer Stage IV colon adenocarcinoma: implications for a standardized scoring system. Cancer 2001;92:1331–46.

2. Akimoto T., Hunter N.R., Buchmiller L. et al. Inverse relationship between epidermal growth factor receptor expression and radiocurability of murine carcinomas. Clin Cancer Res 1999;5:2884–90.

3. Liang K., Ang K.K., Milas L. et al. The epidermal growth factor receptor mediates radioresistance. Int J Radiat Oncol Biol Phys 2003;57:246–54.

4. Giralt J., de las Heras M., Cerezo L. et al. The expression of epidermal growth factorreceptor results in a worse prognosis for patients with rectal cancer treated with preoperative radiotherapy: A multicenter, retrospective analysis. Radiother Oncol 2005;74:101–8.

5. Kim J.S., Kim J.M., Li S. et al. Epidermal growth factor receptor as a predictor of tumor downstaging in locally advanced rectal cancer patients treated with preoperative chemoradiotherapy. Int J Radiat Oncol Biol Phys 2006;66:195–200.

6. Saigusa S., Tanaka K., Toiyama Y. et al. Gene expression profiles of tumor regression grade in locally advanced rectal cancer after neoadjuvant chemoradiotherapy. Oncol Rep 2012;28(3):855–61. doi: 10.3892/or.2012.1863.

7. Spindler K.L., Nielsen J.N., Lindebjerg J. et al. Germline polymorphisms may act as predictors of response to preoperative chemoradiation in locally advanced T3 rectal tumors. Dis Colon Rectum 2007;50:1363–9.

8. Gaedcke J., Grade M., Jung K. et al. KRAS and BRAF mutations in patients with rectal cancer treated with preoperative chemoradiotherapy. Radiother Oncol 2010;94(1):76–81.

9. Bernhard E.J., McKenna W.G., Hamilton A.D. et al. Inhibiting Ras prenyl-ation increases the radiosensitivity of human tumor cell lines with activating mutations of ras oncogenes. Cancer Res 1998;58(8):1754–61.

10. Gupta A.K., Bakanauskas V.J., Cerniglia G.J. et al. The Ras radiation resistance pathway. Cancer Res 2001;61(10):4278–82.

11. Luna-Perez P., Segura J., Alvarado I. et al. Specific c-K-ras gene mutations as a tumor-response marker in locally advanced rectal cancer treated with preoperative chemoradiotherapy. Ann Surg Oncol 2000;7(10):727–31.

12. Garcia-Aguilar J., Chen Z., Smith D.D. et al. Identification of a biomarker profile associated with resistance to neoadjuvant chemoradiation therapy in rectal cancer. Ann Surg 2011;254(3):486–92.

13. Zauber N.P., Marotta S.P., Berman E. et al. Molecular genetic changes associated with colorectal carcinogenesis are not prognostic for tumor regression following preoperative chemoradiation of rectal carcinoma. Int J Radiat Oncol Biol Phys 2010;94(1):76–81.

14. Salonga D., Danenberg K.D., Johnson M. et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res 2000;6:1322–7.

15. Lenz H.J., Danenberg K.D., Leichman C.G. et al. p53 and thymidylate synthase expression in untreated stage II colon cancer: Associations with recurrence, survival, and site. Clin Cancer Res 1998;4:1227–34.

16. Saw R.P., Morgan M., Koorey D. et al. p53, deleted in colorectal cancer gene, and thymidylate synthase as predictors of histopathologic response and survival in low, locally advanced rectal cancer treated with preoperative adjuvant therapy. Dis Colon Rectum 2003;46:192–202.

17. Negri F.V., Campanini N., Camisa R. et al. Biological predictive factors in rectal cancer treated with preoperative radiotherapy or radiochemotherapy. Br J Cancer 2008;98:143–7.

18. Brown D.C., Gatter K.C. Ki67 protein: The immaculate deception? Histopathology 2002;40:2–11.

19. Kim N.K., Park J.K., Lee K.Y. et al. p53, BCL-2, and Ki-67 expression according to tumor response after concurrent chemora-diotherapy for advanced rectal cancer. Ann Surg Oncol 2001;8:418–24.

20. Jakob C., Liersch T., Meyer W. et al. Predictive value of Ki67 and p53 in locally advanced rectal cancer: Correlation with thymidylate synthase and histopathological tumor regression after neoadjuvant 5-FU-based chemoradiotherapy. World J Gastroenterol 2008;14:1060–6.

21. Smith F.M., Reynolds J.V., Kay E.W. et al. COX-2 overexpression in pretreatment biopsies predicts response of rectal cancers to neoadjuvant radiochemotherapy. Int J Radiat Oncol Biol Phys 2006;64:466–72.

22. Charara M., Edmonston T.B., Burkholder S. et al. Microsatellite status and cell cycle associated markers in rectal cancer patients undergoing a combined regimen of 5-FU and CPT-11 chemotherapy and radiotherapy. Anticancer Res 2004;24:3161–7.

23. Reerink O., Karrenbeld A., Plukker J.T. et al. Molecular prognostic factors in locally irresectable rectal cancer treated preoperatively by chemo-radiotherapy. Anticancer Res 2004;24:1217–21.

24. Kudrimoti M., Lee E.Y., Kang Y. et al. Genetic markers predictive of response to induction chemoradiotherapy for locally advanced rectal cancers. J Ky Med Assoc 2007;105:18–22.

25. Rödel C., Grabenbauer G.G., Papadopoulos T. et al. Apoptosis as a cellular predictor for histopathologic response to neoadjuvant radiochemotherapy in patients with rectal cancer. Int J Radiat Oncol Biol Phys 2002;52:294–303.

26. Chang H.J., Jung K.H., Kim D.Y. et al. Bax, a predictive marker for therapeutic response to preoperative chemoradiotherapy in patients with rectal carcinoma. Hum Pathol 2005;36:364–71.

27. Rau B., Sturm I., Lage H. et al. Dynamic expression profile of p21WAF1/CIP1 and Ki-67 predicts survival in rectal carcinoma treated with preoperative radiochemotherapy. J Clin Oncol 2003;21:3391–401.

28. Debucquoy A., Libbrecht L., Roobrouck V. et al. Morphological features and molecular markers in rectal cancer from 95 patients included in the European Organisation for Research and Treatment of Cancer22921 trial: Prognostic value and effects of preoperative radio (chemo) therapy. Eur J Cancer 2008;44:791–7.

29. Bertolini F., Bengala C., Losi L. et al. Prognostic and predictive value of baseline and posttreatment molecular marker expression in locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy. Int J Radiat Oncol Biol Phys 2007;68:1455–61.

30. el-Deiry W.S., Harper J.W., O’Connor P.M. et al. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 1994;54:1169–74.

31. Lu Y., Yamagishi N., Yagi T., Takebe H. Mutated p21(WAF1/CIP1/SDI1) lacking CDK-inhibitory activity fails to prevent apoptosis in human colorectal carcinoma cells. Oncogene 1998;16:705–12.

32. Waldman T., Lengauer C., Kinzler K.W., Vogelstein B. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 1996;381:713–6.

33. Wouters B.G., Giaccia A.J., Denko N.C., Brown J.M. Loss of p21Waf1/Cip1 sensitizes tumors to radiation by an apoptosis-independent mechanism. Cancer Res 1997;57:4703–6.

34. Tian H., Wittmack E.K., Jorgensen T.J. p21WAF1/CIP1 antisense therapy radiosensitizes human colon cancer by converting growth arrest to apoptosis. Cancer Res 2000;60:679–84.

35. Lin L.C., Lee H.H., Hwang W.S. et al. p53 and p27 as predictors of clinical outcome for rectal-cancer patients receiving neoadjuvant therapy. Surg Oncol 2006;15:211–6.

36. Yamaguchi H., Bhalla K., Wang H.G. Bax plays a pivotal role in thapsigargin-induced apoptosis of human colon cancer HCT116 cells by controlling Smac/Diablo and Omi/HtrA2 release from mitochondria. -Cancer Res 2003;63:1483–9.

37. Wagener C., Bargou R.C., Daniel P.T. et al. Induction of the deathpromoting gene bax-alpha sensitizes cultured breast-cancer cells to drug-induced apoptosis. Int J Cancer 1996;67:138–41.

38. Walton M.I., Whysong D., O’Connor P.M. et al. Constitutive expression of human Bcl-2 modulates nitrogen mustard and camptothecin induced apoptosis. Cancer Res 1993;53:1853–61.

39. Miyashita T., Reed J.C. bcl-2 gene transfer increases relative resistance of S49.1 and WEHI7.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and multiple chemotherapeutic drugs. Cancer Res 1992;52:5407–11.

40. Fukunaga-Johnson N., Ryan J.J., Wicha M. et al. Bcl-2 protects murine erythroleukemia cells from p53-dependent and -independent radiation-induced cell death. Carcinogenesis 1995;16:1761–7.

41. Kuremsky J.G., Tepper J.E. and McLeod H.L. Biomarkers foe response to neoadjuvant chemoradiotherapy foe rectal cancer. Int J Radiat Oncol Biol Phys 2009;74(3):673–88.

42. Altieri D.C. Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 2008;8(1):61–70.

43. Rödel C., Haas J., Groth A. et al. Spontaneous and radiation-induced apoptosis in colorectal carcinoma cells with different intrinsic radiosensitivities: survivin as a radioresistance factor. Int J Radiat Oncol Biol Phys 2003;55(5):1341–7.

44. Rödel F., Hoffmann J., Distel L. et al. Survivin as a radioresistance factor, and prognostic and therapeutic target for radiotherapy in rectal cancer. Cancer Res 2005;65(11):4881–7.

45. Sprenger T., Rödel F., Beissbarth T. et al. Failure of down-regulation of survivin following neoadjuvant radiochemotherapy in rectal cancer is associated with distant metastases and shortened survival. Clin Cancer Res 2011 Mar 15;17(6):1623–31.

46. Ostman A., Augsten M. Cancer-associated fibroblasts and tumor growth – bystanders turning into key players. Curr Opin Genet Dev 2009;19:67–73.

47. Sund M., Kalluri R. Tumor stroma derived biomarkers in cancer. Cancer Metastasis Rev 2009;28:177–83.

48. Orimo A., Weinberg R.A. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 2006;5:1597–601.

49. Huang Y., Wang S., Kelly T. Seprase promotes rapid tumor growth and increased microvessel density in a mouse model of human breast cancer. Cancer Res 2004;64:2712–6.

50. Orimo A., Gupta P.B., Sgroi D.C. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005;121:335–48.

51. Matsusue R., Kubo H., Hisamori S. et al. Hepatic stellate cells promote liver metastasis of colon cancer cells by the action of SDF-1/CXCR4 axis. Ann Surg Oncol 2009;16:2645–53.

52. Yoshitake N., Fukui H., Yamagishi H. et al. Expression of SDF-1 alpha and nuclear CXCR4 predicts lymph node metastasis in colorectal cancer. Br J Cancer 2008;98:1682–9.

53. Saigusa S., Toiyama Y., Tanaka K. et al. Cancer-associated fibroblasts correlate with poor prognosis in rectal cancer after chemo-radiotherapy. Int J Oncol 2011;38:655–63.

54. Saigusa S., Toiyama Y., Tanaka K. et al. Stromal CXCR4 and CXCL12 expression is associated with distant recurrence and poor prognosis in rectal cancer after chemoradio-therapy. Ann Surg Oncol 2010;17:2051–8.

55. Kong F.-M., Anscher M.S., Murase T. et al. Elevated plasma transforming growth factor beta1 levels in breast cancer patients decrease after surgical removal of the tumor. Ann Surg 1995;222:155–62.

56. Richter K.K., Fink L.M., Hughes B.M. et al. Differential effect of radiation on endothelial cell function in rectal cancer and normal rectum. Am J Surg 1998;176:642–7.

57. Angenete E., Langenskiöld M., Palmgren I. et al. Transforming growth factor beta-1 in rectal tumour, mucosa and plasma in relation to radiotherapy and clinical outcome in rectal cancer patients. Int J Colorectal Dis 2007;22:1331–8.

58. Jubb A.M., Harris A.L. Biomarkers to predict the clinical efficacy of bevacizumab in cancer. Lancet Oncol 2010;11:1172–83.

59. Zlobec I., Steele R., Compton C.C. VEGF as a predictive marker of rectal tumor response to preoperative radiotheraphy. Cancer 2005;104:2517–21.

60. Peng Y., Wang L., Du C., Gu J. Expression of vascular endothelial growth factor can predict distant metastasis and disease-free survival for clinical stage III rectal cancer following 30-Gy/10-f preoperative radiotherapy. Int J Colorectal Dis 2012;27:1555–60.

61. Kurt A., Yanar F., Asoglu O. et al. Low Mmp 9 and VEGF levels predict good oncologic outcome in mid and low rectal cancer patients with neoadjuvant chemoradiation. BMC Clin Pathol 2012;12:27.

62. Grade M., Wolff H.A., Gaedcke J., Ghadimi B.M. The molecular basis of chemoradiosensitivity in rectal cancer: implications for personalized therapies. Langenbecks Arch Surg 2012;397:543–55.

63. Unsal Kilic D., Uner A., Akyürek N. et al. Matrix metalloprotinase-9 expression correlated with tumor response in patients with locally advanced rectal cancer undergoing preoperative chemoradiotheraphy.Int J Radiat Oncol 2003;33:186–91.

64. Zlobec I., Vuong T., Compton C.C. et al. Combined analysis of VEGF and EGFR predicts complete tumour response in rectal cancer treated with preoperative radiothera-py. Br J Cancer 2008 Jan 29;98(2):450–6.

65. Shipitsin M., Polyak K. The cancer stem cell hypothesis: in search of definitions, markers, and relevance. Lab Invest 2008;88:459–63.

66. Eyler C.E., Rich J.N. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 2008;26:2839–45.

67. Ricci-Vitiani L., Lombardi D.G., Pilozzi E. et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007;445:111–5.

68. O'Brien C.A., Pollett A., Gallinger S., Dick J.E. A human colon cancer cell capable of initiating tumour growth in immunodefi-cient mice. Nature 2007;445:106–10.

69. Bao S., Wu Q., McLendon R.E. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006;444:756–60.

70. Rich J.N. Cancer stem cells in radiation resistance. Cancer Res 2007;67:8980–4.

71. Todaro M., Alea M.P., Di Stefano A.B. et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 2007;1:389–402.

72. Mia-Jan K., Jung S.Y., Kim I.Y. et al. CD133 expression is not an independent prognostic factor in stage II and III colorectal cancer but may predict the better outcome in patients with adjuvant therapy. BMC Cancer 2013;13:166.

73. Yasuda H., Tanaka K., Saigusa S. et al. Elevated CD133, but not VEGF or EGFR, as a predictive marker of distant recurrence after preoperative chemoradiotherapy in rectal cancer. Oncol Rep 2009;22:709–17.

74. Jao S.W., Chen S.F., Lin Y.S. et al. Cytoplasmic CD133 expression is a reliable prognostic indicator of tumor regression after neoadjuvant concurrent chemoradiotherapy in patients with rectal cancer. Ann Surg Oncol 2012;19:3432–40.

75. Sprenger T., Conradi L.C., Beissbarth T. et al. Enrichment of CD133-expressing cells in rectal cancers treated with preoperative radiochemotherapy is an independent marker for metastasis and survival.Cancer 2012 Jan 1;119(1):26–35. doi: 10.1002/cncr.27703.

76. Lin C.H., Chen W.T., Liu C.H. et al. Increased CD133 expression after preoperative chemoradiotherapy in rectal cancers other than mucin-rich tumors. Virchows Arch 2012;460:447–53.

77. Saigusa S., Tanaka K., Toiyama Y. et al. Clinical significance of CD133 and hypoxia inducible factor-1a gene expression in rectal cancer after preoperative chemoradiotherapy. Clin Oncol (R Coll Radiol) 2011;23:323–32.

78. Shmelkov S.V., Butler J.M., Hooper A.T. et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest 2008;118:2111–20.

79. Wernig M., Meissner A., Foreman R. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007;448(7151):318–24.

80. Ben-Porath I., Thomson M.W., Carey V.J. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 2008;40(5):499–507.

81. Saigusa S., Tanaka K., Toiyama Y. et al. Correlation of CD133, OCT4, and SOX2 in rectal cancer and their association with distant recurrence after chemoradiotherapy. Ann Surg Oncol 2009;16:3488–98.

82. Kristiansen G., Sammar M., Altevogt P. Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol 2004;35(3):255–62.

83. Aigner S., Ruppert M., Hubbe M. et al. Heat stable antigen (mouse CD24) supports myeloid cell binding to endothelial and platelet P-selectin. Int Immunol 1995;7(10):1557–65.

84. Hiroishi K., Inomata M., Kashima K. et al. Cancer stem cell-related factors are associated with the efficacy of pre-operative chemoradiotherapy for locally advanced rec-tal cancer. Exp Ther Med 2011;2(3):465–70.

85. Du L., Wang H., He L. et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 2008;14(21):6751–60.

86. Huh J.W., Kim H.R., Kim Y.J. et al. Expression of standard CD44 in human colorectal carcinoma: association with prognosis. Pathol Int 2009;59:241–6.

87. Horst D., Kriegl L., Engel J. et al. Prognostic significance of the cancer stem cell markers CD133, CD44, and CD166 in colorectal cancer. Cancer Invest 2009;27:844–50.

88. Nagata T., Sakakura C., Komiyama S. et al. Expression of cancer stem cell markers CD133 and CD44 in locoregional recurrence of rectal cancer. Anticancer Res 2011;31:495–500.

89. Kojima M., Ishii G., Atsumi N. et al. CD133 expression in rectal cancer after preoperative chemoradiotherapy. Cancer Sci 2010;101:906–12.

90. Kawamoto A., Tanaka K., Saigusa S. et al. Clinical significance of radiation- induced CD133 expression in residual rectal cancer cells after chemoradiotherapy. Exp Ther Med 2012;3:403–9.

91. Barker N., van Es J.H., Kuipers J. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007;449:1003–7.

92. Becker L., Huang Q., Mashimo H. Immunostaining of Lgr5, an intestinal stem cell marker, in normal and premalignant human gastrointestinal tissue. Sci World J 2008;8:1168–76.

93. Saigusa S., Inoue Y., Tanaka K. et al. Clinical significance of LGR5 and CD44 expression in locally advanced rectal cancer after preoperative chemoradiotherapy. Int J Oncol 2012;41:1643–52.

94. Saigusa S., Inoue Y., Tanaka K. et al. Significant correlation between LKB1 and LGR5 gene expression and the association with poor recurrence-free survival in rectal cancer after preoperative chemoradiotherapy. J Cancer Res Clin Oncol 2013;139:131–8.

95. Jansen M., Ten Klooster J.P., Offerhaus G.J., Clevers H. LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism. Physiol Rev 2009;89:777–98.

96. Gurumurthy S., Xie S.Z., Alagesan B. et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 2011;468:659–63.

97. Nakada D., Saunders T.L., Morrison S.J. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 2010;468:653–8.

98. Kendziorra E., Ahlborn K., Spitzner M. et al. Silencing of the Wnt transcription factor TCF4 sensitizes colorectal cancer cells to (chemo-) radiotherapy. Carcinogenesis 2011 Dec;32(12):1824–31.

99. Ghadimi B.M., Grade M., Difilippantonio M.J. et al. Effectiveness of gene expression profiling for response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy. J Clin Oncol 2005;23:1826–38.

100. Lin C.Y., Tian Y.F., Wu L.C. et al. Rsf-1 expression in rectal cancer: with special emphasis on the independent prognostic value after neoadjuvant chemoradiation. J Clin Pathol 2012;65:687–92.

101. Gaedcke J., Grade M., Camps J. et al. The rectal cancer microRNAome – microRNA expression in rectal cancer and matched normal mucosa. Clin Cancer Res 2012;18:4919–30.

102. Liersch T., Grade M., Gaedcke J. et al. Preoperative chemoradiotherapy in locallyadvanced rectal cancer: correlation of a gene expression-based response signature with recurrence. Cancer Genet Cytogenet 2009;190(2):57–65.

103. Watanabe T., Komuro Y., Kiyomatsu T. et al. Prediction of sensitivity of rectal cancer cells in response to preoperative radiotherapy by DNA microarray analysis of gene expression profiles. Cancer Res 2006;66(7):3370–4.

104. Rimkus C., Friederichs J., Boulesteix A.L. et al. Microarray based prediction of tumor response to neoadjuvant radiochemotherapy of patients with locally advanced rectal cancer. Clin Gastroenterol Hepatol 2008;6:53–61.

105. Kim I.J., Lim S.B., Kang H.C. et al. Microarray gene expression profiling for pre-dicting complete response to preoperative chemoradiotherapy in patients with advanced rectal cancer. Dis Colon Rectum 2007;50(9):1342–53.

106. Brettingham-Moore K.H., Duong C.P., Greenawalt D.M. et al. Pretreatment trans-criptional profiling for predicting response to neoadjuvant chemoradiotherapy in rectal adenocarcinoma. Clin Cancer Res 2011;17(9):3039–47.

107. Petty R.D., Samuel L.M., Murray G.I. et al. APRIL is a novel clinical chemo-resistance biomarker in colorectal adenocarcinoma identified by gene expression profiling. BMC Cancer 2009;9:434.

108. Watanabe T., Kobunai T., Yamamoto Y. et al. Differential gene expression signatures between colorectal cancers with and without KRAS mutations: crosstalk between the KRAS pathway and other signalling pathways. Eur J Cancer 2011;47:1946–54.

109. Chen H.Y., Yu S.L., Chen C.H. et al. A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med 2007;356:11–20.


Для цитирования:


Федянин М.Ю., Трякин А.А., Тюляндин С.А. БИОЛОГИЧЕСКИЕ МАРКЕРЫ ЭФФЕКТИВНОСТИ ПРЕДОПЕРАЦИОННОЙ ХИМИОЛУЧЕВОЙ ТЕРАПИИ МЕСТНО-РАСПРОСТРАНЕННОГО РАКА ПРЯМОЙ КИШКИ. Онкологическая колопроктология. 2013;(4):12-22. https://doi.org/10.17650/2220-3478-2013-0-4-12-22

For citation:


Fedyanin M.Y., Tryakin A.A., Tjulandin S.A. BIOLOGICAL MARKERS OF RECTAL CANCER NEOADJUVANT CHEMORADIOTHERAPY EFFICACY. Colorectal Oncology. 2013;(4):12-22. (In Russ.) https://doi.org/10.17650/2220-3478-2013-0-4-12-22

Просмотров: 255


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-3478 (Print)
ISSN 2413-0583 (Online)